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Abstract

E¤orts to simulate turbulence in the …nancial markets include experi-
ments with the dynamic logistic parabola: x(t) = ·x(t¡ 1)[1¡ x(t¡ 1)],
with 0 < x(t) < 1 and 0 < · · 4. Visual investigation of the logistic
process show the various stability regimes for a range of the real growth
parameter ·. Visualizations for the initial 20 observations provide clear
demonstrations of rapid stabilization of the process regimes. A …g tree
plot for t=101-150 shows all regimes. For 0 < · < 3, the process settles
to a unique stable equilibrium. For 3 · · < 3:6 the process bifurcates by
period-doubling, and, as coloration shows, the pitchfork branches show
180 degree phae shifts between the forks. For 3:6 · · · 4:0 the pro-
cess becomes chaotic. In this regime are windows of stability, e.g., at
· = 3:83. Also, intermittency, characteristic for FX markets, occurs at
speci…c values of · and is algebraically and visually explained. At · = 4,
the proces is complete chaos and is extremely sensitive to small changes in
initial values. We increase the number of observations to 1000 and, using
wavelet multiresolution analysis of level 3, compute the Hurst exponents
of the process at various values of ·. At · = 4, H = 0:58, indicating that
the chaos is a bit pink. A histogram shows a highly platykurtic distri-
bution of the chaos, with an imploded mode and very fat tailss. Several
plots of the state directory of the system in the 2-state space trace out
the parabolic strange attractor. Although the attractor is a well-de…ned
parabola, the points on the attractor are deterministically random and
thus unpredictable. All simulations are executed in an Excel spreadsheet.
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1 INTRODUCTION
Chaos theory, a modern development in mathematics and science, provides a
framework for understanding irregular, or turbulent, ‡uctuations. Chaotic sys-
tems are found in many …elds of science and engineering. The study of their
dynamics is an essential part of the burgeoning science of complexity. Complex-
ity science researches the behavior of nonlinear dynamic processes and has now
reached …nancial economics, in the form of quantitative modeling of turbulence
and of crises in the foreign exchange (FX) markets.

Historically, …nancial economics has been cast in terms of linearized Newto-
nian physics. However, many phenomena in …nancial economics are complex,
nonlinear, self-organizing, adaptive, feedback processes. An example is …nancial
turbulence, which is conjectured to be a process to minimize friction between
cash ‡ows with di¤erent degrees of liquidity, with di¤erent investment hori-
zons or with di¤erent trading speeds. Understanding these nonlinear processes
is of importance to portfolio management, dynamic asset valuation, derivative
pricing, hedging, trading strategies, asset allocation, risk management and the
development of market neutral strategies.

Nonlinear dynamic processes are not new to …nancial economists. Mandel-
brot (1963) found that speculative market prices followed a fractal di¤erentiation
process. More than thirty-…ve years later and using a di¤erent technology, Lo
and MacKinlay (1999) come to the same conclusion. Moreover, nonlinear market
dynamics had already been detected in high-frequency, intra-day trading data
by Müller, Dacarogna et. al. (1990), and was recently con…rmed with di¤erent
data sets and di¤erent analytic techniques by Karuppiah and Los (2000).

Why should the study of nonlinear dynamic systems be of interest to …nancial
economics? Because it o¤ers a di¤erentiated perspective on predictability in
the …nancial markets. Financial processes can be di¤erentiated according to
their predictability. For example, Peters (1999, p. 164) discerns four cases of
predictability (Table 1).

TABLE 1: LEVELS OF PREDICTABILITY
Short Term:

High Nonlinear Dynamic Linear Dynamic
Low Nonlinear Stochastic Dynamic Complex Dynamic

Long-Term: Low High

While deterministic linear dynamic systems show high predictability, both
in the short and the long term, deterministic nonlinear dynamic systems show
high predictability in the short term, but low predictability in the long term.
Stochastic nonlinear systems, in general, show low predictability, both in the
short and the long term. In contrast, complex systems show low short term,
but high long-term predictability.

The current …nancial-economic models of market pricing processes are often
linear or linearized, but such models cannot di¤erentiate between the various de-
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grees of short and long term predictability. Linear models have high predictabil-
ity both in the short and long term. In order to identify …nancial-economic mod-
els that di¤erentiate between the short and long term predictability of pricing
processes, one needs to introduce nonlinearity or complexity.

The particular research question of concern motivating this author is: since
we …nd that …nancial market pricing processes are nonlinear, do they have
high short term and low long term predictability, or are they complex, with
low short term, but high long term predictability? For example, stock market
pricing processes appear to have some short term predictability, or persistence,1
which is exploited by technical traders, but they are often unpredictable in the
longer term, to the dismay of fundamental traders and investors. In addition,
stock market return series show severe discontinuities, like the U.S. stock market
crises in 1929 and 1987, attesting to their persistence.

On the other hand, FX pricing processes are unpredictable, or anti-persistent,2
in the short term, but they tend to show some global predictability in the longer
term. For example, they appear to be rather resilient to exogenous shocks, like
the Thai baht break 1997, or any other drastic revaluation. FX processes do not
often show sharp discontinuities. In fact, the Thai baht break was exceptional
and was probably caused by malfunctioning fundamental asset markets, e.g.,
of bank loans, in the Southeast Asian region. But they show intermittency:
periods of stability and persistence are interrupted by periods of chaos.

In this paper we’ll simulate and analyze the properties of a particular com-
plex nonlinear process in an e¤ort to understand these various predictability
regimes. We run simulation experiments with the logistic parabola. In partic-
ular, we’ll observe four types of behavioral regimes generated by this model,
depending on the value of its growth parameter: (1) regimes of unique dynamic
equilibria, (2) regimes of complex multiple dynamic equilibria, (3) regimes of
intermittency, i.e., a mixture of multiple dynamic equilibria and chaos, and (4)
complete chaos.

Visualization of the distributions of intermittency and of complete chaos,
i.e., of nonstochastic, deterministically random behavior, and particularly the
visualization of the chaotic attractor, produces several jarring surprises for con-
ventional (probability and linearity based) statistics. Such experiments with the
simple logistic parabola also convincingly demonstrate that complex behavior
does not necessitate complex laws. Very simple nonlinear laws can produce very
complex and unpredictable behavior.

2 LOGISTIC PARABOLA
Let’s start with the simple de…nition of a logistic dynamic process, where x(t)
may be the increments of a market price of a security (bond) or of an FX rate.
The logistic parabola has been used to model restrained growth processes and
has been applied in many …elds, in particular in ecology and socio-economics.

1Measured by Hurst exponents in the order of 0:6¡ 0:7.
2Measured by Hurst exponents in the order of 0:25¡ 0:5.
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We’ll simulate, visualize and analyze its most salient features, in particular
its self-similarities generated by nonlinear iteration. We’ll also compute Hurst
exponents of its various stability regimes using wavelet multiresolution analysis.3
We’ll look at its stable and unstable regimes, the deterministic chaos it can
produce, its bifurcation and phase shifting phenomena, its intermittency and
the frequency distribution of chaos.

De…nition 1 The logistic parabola is the following nonlinear di¤erential equa-
tion

x(t) = f(x)
= ·x(t ¡ 1) [1 ¡ x(t ¡ 1)]

= ·x(t ¡ 1) ¡ · [x(t ¡ 1)]2 , with 0 · x(t) < 1 and 0 · · · 4 (1)

where · is a real number, for physical reasons:

Remark 2 This logistic parabola, or quadratic map, was introduced in 1845
by the Belgian sociologist and mathematician Pierre-Francois Verhulst (1804-
1849) to model the growth of populations limited by …nite resources (Verhulst,
1845). The designation logistic, however, did not come into general use until
1875. It is derived from the French logistique, referring to the lodgment of
troops. Interesting details of this logistic process, particularly about its strange
attractor set, can be found in Schroeder (1991).

The logistic parabola is an extremely simple nonlinear di¤erential equation,
which consists of a linear part, ·x(t¡1), and a nonlinear part, ¡· [x(t ¡ 1)]2. It
exhibits stable, bifurcating, intermittent and completely chaotic process regimes
for certain values of the parameter ·, caused by its implied iterative, binomial
”folding” process. The process can swing from stable behavior to intermittent
behavior, and then back to chaotic behavior, by relatively small changes in the
value of its single growth parameter · (cf. Feigenbaum, 1981). This growth
parameter · governs the transitions between the various stability regimes of
this nonlinear dynamic feedback process.

2.1 Stability and Persistence Regimes
These various process regimes are summarized by the Feigenbaum diagram, or
”…g tree” plot in Fig. 1, which shows the steady state equilibrium values of
x(t) in the observation range t = 101; :::; 200 for various values of the growth
parameter ·, which is the sole control parameter of the logistic process.

3The simulations with the logistic parabola were executed in a Microsoft R°Excel 97 spread-
sheet, on a Compaq ARMADA1700 notebook with Intel Pentium II processor. The growth
parameter · was varied in steps of 0.1 for t = 1; 2; :::; 1; 100. The Hurst exponents based on
wavelet multiresolutuion analysis of level 3 of the simulated data using the software Benoit,
Version 1.2, of TruSoft Int’l Inc. 1997, 1999.
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BIFURCATION DIAGRAM OF LOGISTIC PARABOLA
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Fig. 1

Fig. 2 provides the corresponding Hurst exponents, computed from three
resolution levels of wavelet coe¢cients, indicating the relative persistence of the
logistic process for various values of ·. For H = 0:5 the process is white noise
or non-persistent; for 0 < H < 0:5 the process is antipersistent; for 0:5 < H < 1
the process is persistent.
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Notice in Fig. 1 the unique stationary, timeless, homogeneous states of
equilibrium for · < 3, and the apparent multiplicity of equilibrium states after
the critical value of · = 3:0. There is a cascade of supercritical, period-doubling
pitchfork bifurcations and phase-shifting cross-overs for 3 < · < 3:6, followed
by moderate chaos. The …rst bifurcation at · = 3:0. But the coloration in Fig.
1 clearly shows that there are cross-overs, or 180 degree phase shifts, in the
process paths, signifying the occurrence of bi-stability along particular paths.
The …rst cross-over occurs at · = 3:34. This is followed by a set of bifurcations
at · = 3:45, followed by a cross-over switch at · = 3:50, etc.

In this regime the steady state of x(t) is strictly unpredictable, because it
depends on the initial state value and the precision of the computations (=
computation noise), but it can be characterized by one or the other path. This
dependence of the system on di¤erent steady state paths according to past
history is called hysteresis.4

Notice in Fig. 2, that sharp changes in the Hurst exponent do detect the
bifurcations. At · = 3:0 the simple symmetry of the steady state equilibrium
is broken. Between · = 3:0 and · = 3:45 the Hurst exponent is homogeneous
H = 0:924, indicating great persistence, because of the resulting bi-stability. At
· = 3:45 many more bifurcations appear, and at · = 3:6 chaos appears. The
Hurst exponent drops sharply in both cases. Obviously, the Hurst exponent,
which measures the relative persistence of a process, does not detect the phase

4The stability of di¤erential maps which map the unit interval into itself is discussed in
greater detail in Singer (1978).
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shifts in the process at · = 3:34 and · = 3:50.
Chaos, which is unpredictable deterministic evolutionary behavior, appears

in the range 3:6 < · < 4. Here the sharp classical distinction between chance
and necessity, between stochastic and deterministic behavior is blurred and we
witness the emergence of complexity. It appears that, in this particular range
of ·, there exist deterministic randomness. In this range the Hurst exponent is
heterogeneous, indicating the multi-fractality of the logistic process. Between
· = 3:6 and · = 3:74, 0 < H < 0:3 and the process is very anti-persistent. Then,
at · = 3:74 the process is suddenly very persistent, but immediately thereafter,
between · = 3:74 and · = 3:83, 0:3 < H < 0:6, the process is only moderately
anti-persistent. This moderate persistence is similar to what is observed in the
FX markets.

In particular, this moderate chaos regime is interleaved at certain values of
· with periodic ”windows” of relative calm. The most prominent being the
3¡period window starting at · = 1 + 2

p
2 = 3: 83. Once the period length

3 has been observed, all possible periods and frequencies appear and complete
deterministic chaos results (Li and Yorke, 1975). Interestingly, after · = 3:83,
0:6 < H < 0:9: chaos is, counter-intuitively, persistent. However, on very
close detailed observation, within the 3-period window period-doubling reap-
pear, leading to stable orbits of period length 3£2 = 6; 3£22 = 12; 3£23 = 24;
etc., and renewed chaos, in which another 3-period window is embedded, and
so on, ad in…nitum into other self-similar cascades of orbits of period length
3:2n. This is the process regime of turbulence. The cascades of orbits form
one-dimensional ”eddies” 5

We’ll now discuss each of the four regimes of evolutionary behavior of the
logistic parabolic process in a cursory fashion at low values of t to see how
quickly the process stabilizes. Notice the changes in the behavior of x(t), by
looking at its …rst 20 iterations, t = 1; :::; 20, for various values of the growth
parameter ·, starting at x(0) = 0:1 (Fig. 3).6

5For more images of critical points of nonlinear dynamical mappings, see Jensen and Myer
(1985).

6Notice that the Excel spreadsheet plotter has a problem with sharp discontinuities at the
bottom of the chaotic, · = 4:0 process. Excel’s spline smoother curves the line below x(t) = 0,
although the process x(t) ¸ 0, a;ways.

7



Files/Figure1A.wmf

CONVERGENCE AND PERIOD-DOUBLING

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Iteration #

x(
t)

κ=1.5, Η=0.6870

κ=2.0, Η=0.7610

κ=3.2, Η=0.7530

κ=3.5, Η=0.6640

κ=4.0, Η=0.0708

Fig. 3

When · = 1:5, x(t) reaches its steady state of x¤ = 1
3 at about t = 8.

When · = 2:0, x(t) reaches its steady state of x¤ = 1
2 at about t = 4. In these

regimes of unique uniform steady states (which are also asymptotically stable),
the system ignores time. Once it has reached a steady state, it does not matter
where we are in time: the value of the system remains one and the same for
each t. These regimes thus uniquely Newtonian and stationary. But for · = 3:2,
the system produces oscillations between two steady states. First, it appears
to settle in a periodic rhythm by about t = 16. Now the system is clearly
time dependent: it di¤ers in value depending on the phase of the periodicity.
For about · = 3:5, there appear to be two di¤erent periodicities superimposed
on each other and thus oscillations between four di¤erent steady states. For
· = 4, any speci…c periodicity has completely vanished, although there are still
nonperiodic cyclical oscillations.

The Hurst exponent, which ranges between 0 and 1, computed for these …rst
20 observations, is H ¸ 0:664 > 0:5 for · = 1:5, 2:0, 3:2, and 3:5, indicates that
these particular logistic processes are persistent or pink, i.e., between white and
brown noise. But H = 0:07 < 0:5 for · = 4:0, indicating that this chaotic
process is initially anti-persistent.

The completely chaotic process at · = 4:0 is very unstable: the logistic pro-
cess is extremely sensitive to the initial condition, i.e., to the starting point of
the process x(0). Small changes in the initial condition lead to large ampli…ca-
tions of the e¤ects of these changes. In Fig. 4, we show two paths for x(t) for
when x(0) = 0:100000 and when x(0) = 0:100001, with a small change in the
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sixth position after the decimal point.
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Notice that until the two process traces split, they are exactly the same:
their maxima and minima follow in exactly the same order at the same time.
But at the end, the temporal symmetry of the steady state solutions is broken:
the equilibrium has become time dependent. Meteorological processes are often
considered to show regime changes from stable to chaotic. An even simpler
example of such a regime change is cigarette smoke. When it arises from a
cigarette, the smoke is …rst a smooth stable laminar ‡ow, until it rather suddenly
becomes a chaotic ”whirl.”

We will now discuss the four regimes in more detail, visualize them and
algebraically analyze when and why they occur.

2.2 Steady State Solutions
Since we observed that the logistic process stabilizes rather quickly to its steady
states, in the following only its equilibria are analyzed, which are dependent on
the growth parameter ·. For values of · < 3:0; the logistic process settles to a
unique static equilibrium, as follows.

De…nition 3 The static equilibrium or steady state solution is reached
when

x(t) = x(t ¡ 1) = x¤, a constant (2)
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Example 4 For the 1¡orbit, from solving the not iterated logistic equation,

·x¤(1 ¡ x¤) = ·x¤ ¡ · (x¤)2 = x¤ (3)

for a non-trivial solution

x¤ =
· ¡ 1

·
(4)

The slope of the logistic parabola is

@x(t)
@x(t ¡ 1)

= · [1 ¡ 2x(t ¡ 1)] (5)

which equals · for x(t ¡ 1) = 0 and 2 ¡ · for the unique steady state solution
x¤ = ·¡1

· .7 This dynamic equilibrium is stable as long as the slope of the logistic
parabola

¯̄
¯̄ @x(t)
@x(t ¡ 1)

¯̄
¯̄ = j· [1 ¡ 2x(t ¡ 1)]j < 1 (6)

Thus the single point x(t ¡ 1) = x¤ = 0 is stable for 0 · · < 1 and marginally
stable for · = 1, but it is unstable for 1 < ·.

The second steady state solution x¤ = ·¡1
· exists and is stable for 1 < · < 3,

because then
¯̄
¯̄ @x(t)
@x(t ¡ 1)

¯̄
¯̄ < 1 (7)

For example when · = 1:5, x¤ = 1
3 , and

¯̄
¯ @x(t)
@x(t¡1)

¯̄
¯ = 0:5. When · = 2:0,

x¤ = 1
2 , and

¯̄
¯ @x(t)
@x(t¡1)

¯̄
¯ = 0. The steady state x¤ = 1

2 is always superstable (with
period length 1), and convergence to this particular state is always very rapid.

However, something happens when · = 3. At · = 3 the steady state is
x¤ = 2

3 , but the slope of the logistic parabola is
¯̄
¯ @x(t)
@x(t¡1)

¯̄
¯ = 1 and the process

no longer converges (= stably attracted) to x¤! This steady state is marginally
stable: nearby values of x(t) are not attracted to nor repelled from x¤ = 2

3 .

2.3 Self-Organization: Period Doubling
At · = 3, two possible steady state solutions x¤ appear, very closely together,
but clearly separated, between which the process x(t) alternates (Fig. 5).8 The
process remains very predictable, since the oscillation between the two stable
states is regular. When x(t) is shocked at this value of · = 3, it still quickly
returns to this oscillation sequence. This event for · = 3 is called a (Myrberg)
bifurcation or period doubling.

7This is a familiar result for economists who have studied Solow’s one-period delayed stable
market pricing spiral, or dynamic cobweb model, towards a unique equilibrium.

8Fig. 5 and the following Figures portray x(t) for t = 901 ¡ 1000, after the process has
completely stabilized.
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Let’s …rst analyze the regime with two steady state equilibria. An cyclical
trajectory, or orbit, having a period length of P = 2, or 2-orbit, is the steady
state solution x¤, which satis…es the 1£ iterated logistic equation:

f(f(x)) = · f·x¤(1 ¡ x¤) [1 ¡ ·x¤(1 ¡ x¤)]g = x¤ (8)

The value of · for the superstable steady state solutions x¤ = 0:5 is obtained
from solving the once-iterated logistic equation

· f0:5·(1 ¡ 0:5) [1 ¡ 0:5·(1 ¡ 0:5)]g = 0:5 (9)

or

·3 ¡ 4·2 + 8 = 0 (10)

which has three solutions for the growth parameter: · = 2, corresponding
to x¤ = 0:5, · = 1 +

p
5 = 3: 236 1, corresponding to x¤ = 0:8090,9 , and

the inadmissible solution · = 1 ¡
p

5 = ¡1:2361 < 0. Thus, for · = 2 and
· = 1 +

p
5, respectively, there are two stable steady states or frequencies, i.e.,

two alternating, stable orbits of period length P = 2. Accordingly, x(t) takes on
the values x(0) = 0:5 ! x(1) = 0:8090 ! x(2) = x(0) = 0:5 ! x(3) = x(1) =
0:8090, etc. as seen in Fig. 6.

9Solve the once iterated equation (1+
p
5)

n
(1 +

p
5)x¤(1¡ x¤)

h
1¡ (1 +

p
5)x¤(1¡ x¤)

io
=

x¤ for x¤. The growth parameter · = 1 +
p
5 = 3: 236 1 = 2

° , where ° = 0:618::::; i.e. the
golden mean.
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When · is increased further, then these two steady states of the once-iterated
logistic parabola will in turn become unstable at precisely one and the same
value of ·. This is not a coincidence since, according to the chain rule of
di¤erentiation:

@
@x

[f(f(x)]x=x(0) = [f 0(f(x))]x=x(0) : [f 0(x)]x=x(0)

= f 0(x(1):f 0(x(0)) (11)

When x(0) becomes unstable, because
¯̄
¯̄ @
@x

[f(f(x)]x=x(0)

¯̄
¯̄ > 1 (12)

so does x(1) at the same vale of ·. Thus, both these steady state solutions of the
once-iterated logistic equation f(f(x)) will bifurcate at the same · value, leading
to an orbit of period length P = 2n = 22 = 4. In other words, f(f(f(f(x))))
will have n = 4 steady state solutions or frequencies. The 4-orbit has four
consecutive steady state solutions x¤, which satis…es the 3£ iterated logistic
equation.

f(f(f(f(x¤)))) = x¤ (13)

Again, the value of · = 3:4985 for superstable steady state solutions x¤ with
a 4-orbit is obtained from solving the 3£ iterated logistic equation

f(f(f(f(0:5)))) = 0:5 (14)

Accordingly x(t) produces the superstable orbit of period length 4 of f(x):
x(0) = 0:5 ! x(1) = 0:875 ! x(2) = 0:383 ! x(3) = 0:827 ! x(4) = x(0) =
0:5, etc. as seen in Fig.7.
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Four Stable Equilibria (κ=3.50)
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Again, because of the chain rule of di¤erentiation, the four derivatives are
the same at all four points of the orbit. Thus if, for a given value of ·, the
magnitude of one of the derivatives exceeds 1, then the magnitude of each of
the four will. Hence, all four iterated x(t) will bifurcate at the same value of ·,
leading to a cyclical trajectory, or orbit, of period length P = 2n = 23 = 8, etc.

In summary, the general method for …nding the value of the growth param-
eter · for which a superstable orbit with period length P exists, is to solve the
equation

f (P )(0:5) = 0:5 (15)

exactly for ·, where P is the period length of the orbit and f (P ) is the (P ¡ 1) th
iteration of the steady state logistic parabola

f(x¤) = ·x¤(1 ¡ x¤) (16)

2.3.1 Self-similarity and Scaling

The period-doubling transformation of the logistic parabola is asymptotically
self-similar. Feigenbaum (1979) proved that it obeys a scaling law with the
following scaling factor:

®(n)n!1 =
x(n)

P=2 ¡ x(0)

x(n+1)
P=2 ¡ x(0)

! ® = ¡2:5029::: (17)

where x(n)
P=2 is the value of the iterate x at the half period P

2 for a superstable
orbit of period length P = 2n, with n = log2(P ), starting with x(0) = 0:5. This
scaling factor is related to Feigenbaum’s universal constant ±, which appears in
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the following geometric law of the growth parameter ·:10

±(n)n!1 =
·(n) ¡ ·(n¡1)

·(n+1) ¡ ·(n) ! ± = 4:6692016091029::: (18)

Feigenbaum also discusses a simpli…ed theory, which yields the following
relationship between the scaling factor ® of the growth parameter scaling law
and the universal constant ±:

± ¼ ®2 + ® + 1 ¼ 4:76 (19)

2.3.2 Spectral Analysis of Periodic Orbits

Let c(n)
k be the Fourier coe¢cient of the x(n)(t) for a period length P = 2n. In

going from an orbit of period length P = 2n by a period-doubling bifurcation
to an orbit of period length P = 2n+1, the new Fourier coe¢cients with an even
index c(n+1)

2k , which describe the harmonics or periodicities of the regular orbits,
are approximately equal to the old Fourier coe¢cients:

c(n+1)
2k ¼ c(n)

k (20)

because periodicity causes

x(n+P )(t) ¼ x(n)(t) (21)

The odd-indexed Fourier coe¢cients c(n+1)
2k+1 , which describe the subharmon-

ics appearing in the spectrum as a result of period doubling, are determined by
the di¤erence

x(n+P )(t) ¡ x(n)(t) (22)

It can be shown (Feigenbaum, 1979) that the squared magnitudes, or power

ratios, of these odd-indexed Fourier coe¢cients,
¯̄
¯c(n+1)

2k+1

¯̄
¯
2
, are roughly equal to

an adjacent component from the previous orbit scaled down by a factor of

8®4

(1 + ®2)
=

8(¡2:5029)4

1 + (¡2:5029)2
= 43:217 (23)

corresponding to

10 log10 43: 217 = 16: 357dB ¼ 16dB (24)

where dB =decibels.11 When the growth parameter · is increased, more and
more subharmonics appear until deterministic chaos or noise is reached, as we
will see in the following sections.

10This Feigenbaum constant ± was originally found by Grossman and Thomae (1977)
11The number of decibels is, by de…nition, 10 log10 of a squared magnitude ratio, such as

the spectral power ratio.
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2.4 Intermittency and Chaos
The bifurcation scenario repeats itself as · is increased, yielding orbits of period
length 32, 64, etc. ad in…nitum, until at about · = 3:6, this dynamic process
appears to become unstable. The process ends up in an unde…ned orbit of
in…nite period length, of which Fig. 8 gives only a sample ”window” of 100
observations.
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The cyclical trajectory or orbit is now aperiodic, comprising a strange point
set of in…nitely many values of x(t) that never precisely repeat, although there is
cyclicity. The approximate self-similarity of this point set shows Feigenbaum’s
self-similarity scaling factor of about ® = ¡2:5029. The Hausdor¤ dimension
D = 0:538:::of this point set, which is a Cantor set, was derived analytically
and numerically by Grassberger (1981). A good approximation is:

D =
log °

log 1
2:5

¼ 0:525 (25)

where the golden mean ° =
p

5¡1
2 = 0:61803::::Thus this trace is almost half

way in between a line (D = 1) and a set of points (D = 0), with a slight balance
in favor of a line.

Intermittency However, within the chaotic region, when 3:6 · · < 4:0, some
” windows of stability” do occur in between periods of chaos. This alternation
of stability and chaos when · is increased is called intermittency. For example,
for · = 3:82 we have moderate chaos (Fig. 9)
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But then, stability appears to reappear at · = 1+
p

P = 1+
p

23 = 1+2
p

2 =
3:83. There is the so-called tangent bifurcation at this value · = 3:83 (Fig. 10).
This is also indicated by the Hurst exponent in Fig. 2. It looks as if for · = 3:83
there are only two stable equilibria x¤ = 0:154 and x¤ = 0:958, but the process
x(t) passes through the nonattracting, marginally stable equilibrium x¤ = 0:5.
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Just above · = 3:83, the thrice-iterated logistic parabola acquires six ad-
ditional steady state points x¤: three with an absolute slope

¯̄
¯@f(3)(x(t))

@x(t¡1)

¯̄
¯ > 1,

which belong to the unstable orbit of period length 3, and three with a slope¯̄
¯@f(3)(x(t))

@x(t¡1)

¯̄
¯ < 1, which are the three points belonging to the stable orbit with

period length 3 and the apparent periodicity breaks down (Figs. 11 and 12).
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Thus we encounter the famous period-3 orbit, an orbit with three distinct
frequencies, which guarantees that all other period lengths or frequencies exist,
albeit as unstable orbits, at the same parameter value.12 In other words, the
twice-iterated process

f(f(f(x¤) = x¤ (26)

12 In 1971 a Belgian physicist, David Ruelle, and a Dutch mathematician, Floris Takens,
together predicted that the transition to chaotic turbulence in a moving ‡uid would take
place at a well-de…ned critical value of the ‡uid’s velocity. They predicted that this transition
to turbulence would occur after the system had developed oscillations with at least three
distinct frequencies. Experiments with rotating ‡uid ‡ows conducted by American physicists
Jerry Gollub and Harry Swinney in the mid-1970s supported these predictions.
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has a 3-orbit with three consecutive steady state solutions x¤, which satis…es
the 2£ iterated logistic parabola:

f(f(f(0:5))) = ·
·

· f0:5·(1 ¡ 0:5) [1 ¡ 0:5·(1 ¡ 0:5)]g
£ (1 ¡ · f0:5·(1 ¡ 0:5) [1 ¡ 0:5·(1 ¡ 0:5)]g)

¸

=
·3

4

µ
4 ¡ ·

4

¶µ
1 ¡ ·2

4

µ
4 ¡ ·

4

¶¶
= 0:5 (27)

or

·3 (4 ¡ ·)
¡
16 ¡ 4·2 + ·3¢ ¡ 128 = 0 (28)

which has seven exact solutions, three of which are real and four of which are
conjugate complex. Numerically, these solutions are:13

· = 2, which corresponds with the superstable equilibrium x¤ = 0:5.
· = 3: 832, which corresponds with the equilibria x¤ = 0 (marginally stable),

x¤ = 0:154 (stable), x¤ = :0:165 (unstable), x¤ = 0:499 (stable), x¤ = 0: 529
(unstable), x¤ = 0:739 (stable), x¤ = 0:955 (unstable), x¤ = 0: 958.

· = ¡1: 832, which is inadmissible, because 0 · ·.
· = 2: 553 + : 959 i and 2: 553 ¡ : 959 i , which are inadmissible, because · is

real.
· = ¡: 553 + : 959 i and ¡: 553 ¡ : 959 i, which are inadmissible, because · is

real.
The eight equilibria corresponding to · = 3:832 are found from the equation:

3: 832
µ

3: 832 (3: 832x¤(1 ¡ x¤) (1 ¡ 3: 832x¤(1 ¡ x¤)))
£ (1 ¡ 3: 832 (3: 832x¤(1 ¡ x¤) (1 ¡ 3: 832x¤(1 ¡ x¤))))

¶
¡ x¤ = 0

(29)

After period length 3 has appeared at · = 3: 83, orbits of any period length
are possible. As Li and Yorke (1975) state ”period three implies chaos.” Finally,
at · = 4:0 we encounter complete chaos (Fig. 13). Chaos is the coexistence of
an in…nite number of unstable deterministic orbits.
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13Obtained with Maple symbolic algebra software in Scienti…c Workplace, Version 3.0.
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Fig. 13

2.4.1 Universal Order of Period Lengths

The reason for the appearance of any period length, or frequency, after period
length 3 is that the di¤erent period lengths P of stable periodic orbits of uni-
modal maps, like the logistic parabola, do not appear randomly. In fact they
appear in a universal order, as proved by Sharkovskii (1964):

Theorem 5 (Sharkovskii) If ·p is the value of the growth parameter · at
which a stable period of length P …rst appears, as · is increased, then ·p > ·q
if p Â q (read: p precedes q) in the following Sharkovskii order:

3 Á 5 Â 7 Â 9 Â :::
2 ¢ 3 Â 2 ¢ 5 Â 2 ¢ 7 Â :::

:::
2n ¢ 3 Â 2n ¢ 5 Â 2n ¢ 7 Â :::

:::

::: Â 2m Â ::: Â 22 Â 2 Â 1 (30)

Example 6 The minimal · value for an orbit with p = 10 = 2 ¢ 5 is larger than
the minimal · value for p = 12 = 22 ¢ 3 because period length 10 Â 12.

Remark 7 (1) Thus the existence of period length p = 3 guarantees the exis-
tence of any other period length q for some ·q < ·p. (2) If only a …nite number
of period lengths occur, their length must be powers of 2. (3) If a period length p
exists that is not a power of 2, then there are in…nitely many di¤erent periods.

Interestingly, the intervals of · for the stable orbits are dense. That implies
that the parameter values for which no stable periodic orbits exist form no
intervals. Nevertheless, they have a positive Lebesgue measure. This means
that a random choice of the growth parameter · has a nonvanishing probability
of leading to an aperiodic orbit. These aperiodic orbits are thus not ”unlikely.”
They have a particular probability of occurrence, although that probability may
be very small.

2.5 Complete Chaos
With · = 4, the process has become completely chaotic. In Fig. 14 we look at
the ultimate chaotic pattern of the logistic x(t) for · = 4:0 and t = 101; :::; 1100.
The Hurst exponent H = 0:58, indicating that this logistic chaos exhibits some
persistence and is not completely white. No random number generator is used!
The deterministic logistic parabola generates these 1000 values of x(t), after the
…rst 100 values were discarded, starting from x(0) = 0. The process x(t) has
a bounded range: 0 · x(t) · 1, but its mean is unde…ned, as is its variance,
no matter how many observations generated. Ergo, the logistic chaos process is
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completely non-stationary or unstable. When more observations are generated,
the mean and variance will continue to change. There is no convergence to a
unique steady state equilibrium or to a few steady state equilibria. There are
in…nitely many!
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Fig. 15 is the same as Fig.14, but this time the dots representing the steady
states are connected. This noise is a bit more persistent, i.e., moves a bit slower,
than white noise: 0 < H = 0:58 > 0:5. The fractal dimension of this continuous
fractal (non-di¤erentiable) space-…lling line is: D = 2 ¡ H = 1:42
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Fig. 16 shows the frequency distribution of chaos formed by computing a
histogram with 10% equally spaced bins. This frequency distribution of the
1; 000 values of the constrained x(t), 0 < x(t) < 1, is not ‡at, as would be
the case with uniformly distributed white noise. It is highly platykurtic, with a
kurtosis c4 = ¡1:48 (or normalized kurtosis = 3 ¡ 1:48 = 1:52), compared with
that of the Gaussian distribution’s kurtosis c4 = 0 (or normalized kurtosis = 3).
It has an imploded mode and very fat tails against x = 0 and x = 1 that are
considerably heavier than the mode. It is an example of a stable distribution
with a (Zolotarev) stability exponent: ®Z = 1

H = 1
0:583 = 1:715. This very

heavy tailed distribution jarringly contrasts with the conventional bell-shaped,
unimodal, thin-tailed Gaussian distribution, with which most statisticians are
familiar.
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3 NONLINEAR DYNAMICS
Many of the properties of the logistic parabola are paradigmatic, not only for
other unimodal maps, but for di¤erent nonlinear maps as well. These maps
model a broad range of contemporary problems in which nonlinearities play
an essential role (Lyubitch, 2000). In order to better understand the concept
of chaotic behavior of a …nancial system’s evolutionary process, we must …rst
generalize our de…nition of a dynamic system to include such nonlinear dynamic
systems.

De…nition 8 A dynamic system is described by its state at time t, which is
a vector point x(t) in a Euclidean phase space RE, with (integer) dimension
E, and its evolution between time t and time t + ¢t is determined by certain
invariant rules. Each point in phase space can be taken as the initial state x(0),
and is followed by a trajectory x(t) for all t > 0.

Fig. 17 shows the remarkable state space trajectory for the state vector
(x(t); x(t ¡ 1)) of the chaotic logistic process.
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Fig. 17

None of these trajectory cycles or orbits overlap (even under a microscope).
How was this trajectory of 1; 000 iterations, generated? Let’s follow the …rst 10
iterations in Figs 18 and 19.
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Fig. 19

This is a clear example of Mandelbrot’s non-periodic cyclicity (= orbits of
di¤erent length). Figs. 20 and 21 show the …rst 20 iterations.
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Followed by the 50 iterations in Figs. 22 and 23.
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Figs. 24 and 25 show the …rst 90 iterations. Notice how these points in state
space lie precisely on a well-de…ned object, a parabolic curve, but the position
of each these state points is completely irregular or unpredictable and no point
is ever visited twice. Their positions depend on the precision of numerical
computation of the logistic evolutionary trajectory, which depends on the length
of the digital registers of the computer. A computer with a di¤erent computing
precision, delivers a di¤erent series of points, as can be easily demonstrated.
This is an example of deterministic, non-probabilistic randomness.
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3.1 Fractal Attractor
What is the character of the chaotic logistic parabola as a process? To discuss
this properly we need a new concept that is particular to nonlinear dynamic
systems: the attractor.

De…nition 9 A dynamic process is said to have an attractor, if there exists a
proper subset A of the phase space RE, such that for almost all starting points
x(0), and t large enough, x(t) is close to some point of A.

In other words, the attractor set A is the subset of the Euclidean phase space
with in…nitely many equilibrium states x(t) of the system and their limiting
points. The well-de…ned parabolic object in state space in Fig. 26, which de…nes
the non-periodic cycles, is the attractor. Notice that this chaotic process is not
an anarchic process, since it clearly has macroscopic structure. It is complex in
the sense that it combines the global stability of the (logistic) parabola with the
local uncertainty of where the process at any time is on the parabola.
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This subset of steady state points is a Cantor-like set, with a Haussdor¤
dimension close to (but not exactly equal to) zero. The attractor is the set of all
these deterministically random equilibria of x(t). The limited dimension D of an
attractor A is almost always fractional (= non-integer) and one speaks of fractal
attractors ( also called strange or chaotic attractors). Fractal attractors are
non-periodic, but cyclic! Their state trajectories in phase space never intersect,
although these trajectories wander about the whole attractor set. Thus fractal
attractors are sets with in…nitely many dynamic equilibria.14

Remark 10 Fractal attractors are called strange, because familiar attrac-
tors consist either of single points (…xed points), …nitely many points (periodic
orbits), or continuous manifolds that give rise to periodic or aperiodic orbits.
However, strange attractors do have structure and thus contain information,
although this information is incomplete. Often they are self-similar or approx-
imately so and they have fractal Hausdor¤ dimensions. Often we can identify
the complete abstract set from the fractal attractor, as in the case of the logistic
parabola.

Remark 11 The behavior of fractal attractors can be approximately described
by wave functions, i.e., linear expansions of wavelets. This is currently a hot
area of research: the modeling of (…nancial) turbulence by using wavelet mul-
tiresolution theory.

14 In classical …nancial-economics, equilibria are commonly static. Dynamic equilibria have
just started to appear in the …nancial-economic literature, although they were already familiar
to mathematical economists in the 1970s.
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3.2 Chaotic Processes
We can now de…ne chaotic behavior of a nonlinear dynamic process in terms of
its attractor.

De…nition 12 A chaotic process is one of which the behavior shows sensi-
tivity to initial conditions x(0), so that no point of the attractor set A is visited
twice in …nite time.

Thus, any uncertainty in the initial state of the given system, no matter
how small, will lead to rapidly growing errors in any e¤ort to predict the fu-
ture behavior of x(t). Meteorologists faces such problems with the prediction
of the weather.15 The plight of …nancial economists is, of course, similar (Los,
1991). Indeed, the transition from stable, equilibrium, behavior to chaotic be-
havior when the growth parameter · is increased, as exhibited by the logistic
parabola, has been observed in many physical systems, in …elds as diverse as me-
teorology, seismology, ecology, epidemiology, medicine, economics and …nance,
to name just a few.16 In particular, intermittency of turbulence, where some
regions are marked by very high dissipation or chaos, while other regions seem
by contrast nearly free of dissipation, is symptomatic of the observed behav-
ior of FX markets, both in time and spatially. In the second half of 1997, the
Southeast Asian markets saw a rapid succession of periods of turbulence and
temporary stability. At the same time, while the Southeast Asian FX markets
exhibited this temporal intermittency in the second half of 1997, the Japanese
Yen and Deutschemark markets were completely unperturbed.

4 CONCLUSION
In this paper we’ve studied the behavior of a nonlinear dynamic system by
simulation in preparation of the quantitative study of FX market processes. The
logistic parabola is capable of producing di¤erent process regimes, depending
on the value of its growth parameter ·. These regimes are summarized in Table

15 Indeed, the modern study of chaotic dynamics began in 1963, when the American meteo-
rologist Edward Lorenz demonstrated that a simple, deterministic model of thermal convection
- in the Earth’s atmosphere showed sensitivity to initial conditions or, in current terms, that
it was a chaotic process.

16The term chaotic dynamics refers to the evolution of a process in time. Chaotic processes,
however, also often display spatial disorder - for example, in complicated ‡uid ‡ows. Incorpo-
rating spatial patterns into theories of chaotic dynamics is now a very an active area of study.
Researchers hope to extend theories of chaos to the realm of fully developed physical turbu-
lence, where complete disorder exists in both space and time. This e¤ort is widely viewed
as among the greatest challenges of modern physics. The equivalence in …nancial economics
would be to …nd a complete chaotic-dynamic theory of multiple coexisting market pricing
processes, which can explain …nancial crises occurring in several interlinked regional pricing
markets (Cf. Dechert, 1996).
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2.

TABLE 2: EQUILIBRIA REGIMES OF THE LOGISTIC PROCESS
Parameter Equilibria Stability
0 · · < 1 x¤ = 0 stable

· = 1 x¤ = 0 marginally stable
1 < · < 3 x¤ = ·¡1

· superstable (1-period)
· = 3 x¤ = 2

3 ! x¤ = 2
3 + ² (² very small) ! x¤ = 2

3 ; etc …rst bifurcation (2-period)
3 < · < 3:58 x¤(1) ! x¤(2) ! ::: ! x¤(n + 1) = x¤(1) multiple stability (n-period)

· = 3:34 …rst 180 degree phase shift
· = 3:45 x¤(1) ! x¤(2) ! x¤(3) ! x¤(4) ! x¤(1); etc second bifurcation (4-period)
· = 3:50 second 180-degree phase shift
· = 3:58 x¤(1) ! x¤(2) ! ::: ! x¤(large) moderate chaos

3:58 < · < 4 complexity
· = 3:82 x¤(1) ! x¤(2) ! ::: ! x¤(large) moderate chaos
· = 3:83 x¤(1) ! x¤(2) ! x¤(3) ! x¤(1); etc apparent stability (3-period)
· = 3:86 x¤(1) ! ::: ! x¤(3) ! x¤(1) & x¤(1) ! ::: ! x¤(large) intermittency
· = 4:0 x¤(1) ! x¤(2) ! ::: ! x¤(1) complete chaos

For the lower values of · < 3, the logistic process is like a stable linearized
Newtonian process with a single stable equilibrium. Thus it is completely pre-
dictable in the short and the long term, or locally and globally. For · = 4:0 the
logistic process is completely chaotic, i.e., it is unstable in both the short and
the long term, or locally and globally unstable. A small change in the initial
condition will cause it to move to a completely di¤erent level at an unpredictable
time.

The most interesting process regimes from the point of view of current re-
search into FX market processes, are the logistic processes that lie in between
these two extreme regimes. These processes are complex and highly structured,
like the period-doubling bifurcation processes, when 3 < · < 3:83, which os-
cillate between even numbers of stable equilibria, i.e., with di¤erent but even
period lengths. They can become very complex when the number of stable
equilibria increases and they can show moderate chaos, but with intermittency.
Periods of stability interlaced by periods of moderate chaos, or vice versa. Inter-
mittency processes contain processes that are stable in the short term or locally,
and unstable in the long term or globally, and processes that are unstable in
the short term, or locally, and stability in the long term or globally.

Such complex processes are prevalent in nature because they survive. They
always operate in high states of uncertainty. This is the same with FX markets.
This uncertainty cannot be eliminated, because the buying and selling actions
of the individual market participants cannot be predicted. But lack of local or
short term predictability may give such free pricing systems their global or long
term stability.

We saw that intermittency process regimes are very …nely balanced. There
are small ranges of the growth parameter · where the logistic process is in
a period of calm and stability, but when the parameter moves outside these
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windows of stability ranges, the process is plunged into moderate chaos. This
should provide cause for extreme caution for tinkering with well working FX
markets, which show intermittency, i.e., fairly long periods of relative stability,
interrupted by fairly short periods of chaos. Institutional policy changes, which
change parameter regimes, can cause a stable market mechanism to move into
moderate chaos. On the other hand, it can also be rescued from such chaos, by
counteracting policy changes. This does not mean that one should eliminate the
uncertain pricing processes. But it does mean that we must …rst understand the
actual quantitative parametrization of these processes before we start to tinker!

It is clear that the current level of understanding of market pricing systems,
which still relies on linearized models borrowed from Newtonian physics, is
insu¢cient, because actual market pricing process are not both short and long
term predictable. They show heterogeneous levels of predictability. The logistic
parabola is just a simple analogue simulation model, but it provides some clear
guidelines. However more empirical research is required for the identi…cation
of the proper nonlinear dynamic con…guration and parametrization of actual
…nancial market pricing.
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