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 The max-sum algorithm 

•  Sum-product algorithm 
–  Takes joint distribution expressed as a factor graph 
–  Efficiently finds marginals over component variables 

•  Max-sum addresses two other tasks 
1.  Setting of the variables that has the highest 

probability 
2.  Find value of that probability 

•  Algorithms are closely related 
–  Max-sum is an application of dynamic programming 

to graphical models 
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Finding latent variable values 
having high probability 

•  Consider simple approach 
–  Use sum-product to obtain marginals            for every 

variable 
–  For each variable find value       that maximizes marginal 

•  This would give set of values that are individually 
most probable 

•  However we wish to find vector            that 
maximizes joint distribution, i.e. 

•  With join probability  
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Example 
•  Maximum of joint distribution 

–  Occurs at x=1, y=0 
–  With p(x=1,y=0)=0.4 

•  Marginal p(x) 
–   p(x=0) = p(x=0,y=0)+p(x=0,y=0)=0.6 
–   p(x=1) = p(x=1,y=0)+p(x=1,y=1)=0.4 

•  Marginal p(y) 
–  P(y=0)=0.7 
–  P(y=1)=0.3 

•  Marginals are maximized by x=0 and y=0 which 
corresponds to 0.3 of joint distribution 

•  In fact, set of individually most probable values 
can have probability zero in joint 

p(x,y
) 

x=0 x=1 

y=0 0.3 0.4 
y=1 0.3 0.0 



Machine Learning                        ! ! !   ! !                                                 Srihari 

5 

Max-sum principle 
•  Seek efficient algorithm for 

–  Finding value of x that maximizes p(x) 
–  Find value of joint distribution at that x 

•  Second task is written 

    where M is total number of variables 

•  Make use of distributive law for max operator 
–    
–  Which holds for 
–  Allows exchange of products with maximizations 
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Chain example 

•  Markov chain joint distribution has form 

•  Evaluation of probability maximum has form 

•  Exchanging max and product operators 

–  Results in 
•  More efficient computation 
•  Interpreted as messages passed from node xN to node 
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Generalization to tree factor graph 

•  Substitution factored graph expansion 

•  Into 
•  And  exchanging maximizations with products 
•  Final maximization is performed over product 

of all messages arriving at the root node 
•  Could be called the max-product algorithm 
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Use of log probabilities 

•  Products of probabilities can lead to numerical 
underflow problems 

•  Convenient to work with logarithm of joint 
distribution 

•  Has the effect of replacing products in max-
product algorithm with sums 

•  Thus we obtain the max-sum algorithm 
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Message Passing formulation 
•  In sum-product we had 

•  By replacing sum with max and products with 
sums of logarithms  
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Initial messages sent  
by leaf nodes  

Initial messages sent  
by leaf nodes  

From factor 
node to 
variable node 

From variable  
Node to 

factor node 
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Maximum compution 

•  At root node in sum-product algorithm 

•  By analogy in max-sum algorithm 

∏
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Finding variable configuration with 
maximum value 

•  In evaluating  pmax we will also get xmax for the most 
probable value for the root node as 

•  It is tempting to apply the above to from the root 
back to leaves 
–  However there may be multiple configurations of x all of 

which give rise to maximum value of p(x) 
•  Recursively repeated at every node 

–  So over all configuration need not be the one that 
maximizes 

∑
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Modified message passing 
•  Different type of message passing from the root node 

to the leaves 
•  Keeping track of which values of the variables give 

rise to the maximum state of each variable 
•  Storing quantities given by  

•  Understood better by looking at lattice or trellis 
diagram 
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Lattice or Trellis Diagram 

•  k=2 and k=3 each 
represent possible 
values of xN

max 

•  Two paths give global 
maximum 
–  Can be found by tracing 

back along opposite 
direction of arrow 

Not a graphical model 
Columns represent variables 
Row represent states of variable 
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Backtracking in Trellis 
•  For each state of given variable there is a unique 

state of the previous variable that maximizes 
probability 
–  ties are broken systematically or randomly 

•  Equivalent to propagating a message back down 
the chain using 

•  Know as backtracking 

)(xx nn
maxmax
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Extension to general tree graphs 

•  Method is generalizable to tree-structured 
factor graphs 

•  If a message is sent from a factor node f to a 
variable node x 
–  Maximization is performed over all other variable 

nodes x1,..,xN that are neighbors of the factor node 
•  Keeping track of which values of the variables 

gave the maximum 
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Viterbi Algorithm 

•  Max-sum algorithm gives exact maximizing 
configuration for variables provided factor graph 
is a tree 

•  Important application is in finding most probable 
sequence of hidden states in a HMM 
–   known as the Viterbi algorithm 
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Max sum versus ICM 

•  ICM is simpler 
•  Max sum finds global maximum for tree 

graphs 
•  ICM is not guaranteed to find global 

maximum 
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Exact inference in general graphs 

•  Sum-product and max-sum algorithms 
–  are efficient and exact solutions 

•  to inference problems in tree-structured graphs 

•  In some cases we need to deal with graphs 
with loops 

•  Message passing framework can be 
generalized to arbitrary graph topologies 

•  Know as junction tree algorithm 



Machine Learning                        ! ! !   ! !                                                 Srihari 

19 

Junction Tree Algorithm 
•  Triangulation: 

–  Find chord-less Cycles such as ACBDA and add links such as AB 
or CD 

•  Join tree 
–  Nodes correspond to maximal cliques of triangulated graph 
–  Links connect pairs of cliques that have variables in common 
–  Done so as to give a maximal spanning tree defined as  

•  Weight of the tree is maximum 
•  Weight is sum of weights for links 

•  Junction tree 
–  Tree is condensed so that any clique that is a subset of another 

clique is absorbed 
•  Tow-stage message passing algorithm 

–  equivalent to sum-product, can be applied to junction tree 
–  to find marginals and conditionals 


