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GA-Fuzzy Approaches: Application to Modeling  
of Manufacturing Process 

Arup Kumar Nandi 

Central Mechanical Engineering Research Institute (CSIR-CMERI) 
Durgapur-713209, West Bengal, India 
nandiarup@yahoo.com, nandi@cmeri.res.in 

This chapter presents various techniques using the combination of fuzzy logic and 
genetic algorithm (GA) to construct model of a physical process including manu-
facturing process. First, an overview on the fundamentals of fuzzy logic and fuzzy 
inferences systems toward formulating a rule-based model (called fuzzy rule based 
model, FRBM) is presented. After that, the working principle of a GA is discussed 
and later, how GA can be combined with fuzzy logic to design the optimal know-
ledge base of FRBM of a process is presented. Results of few case studies of  
modeling various manufacturing processes using GA-fuzzy approaches conducted 
by the author are presented. 

4.1   Introduction 

Optimal selection of machining parameters is an imperative issue to obtain a better 
performance of machining, cost effectiveness as well as to achieve a desired accu-
racy of the attributes of size, shape and surface roughness of the finished product. 
Selection of these parameters is traditionally carried out on the basis of the expe-
rience of process planners with the help of past data available in machining hand-
books and tool catalogs. Practitioners continue to experience great difficulties due 
to the lack of sufficient data on the numerous new cutting tools with different ma-
terials. Specific data on relevant machining performance measures such as tool 
life, surface roughness, chip form, etc. are very difficult to find due to the lack of 
reliable information or predictive models for these measures. In automated manu-
facturing processes, it is required to control the machining process by determining 
the optimum values of machining parameters online during machining. Therefore, 
it is important to develop a technique to predict the attribute of a product before 
machining to evaluate the robustness of machining parameters for keeping a de-
sired attribute and increasing product quality. Construction of suitable machining 
process model and evaluation of the optimal values of machining parameters using 
this model as predictor are essential and challenging tasks. 
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The model of a machining process represents a mapping of input and output va-
riables in specific machining conditions. The input variables differ corresponding 
to the type of machining process and the desired output. For example, in turning, 
the surface roughness (output variable) is dependent on a number of variables that 
can be broadly divided into four groups: major variables which include cutting 
speed, feed rate, depth of cut and tool wear; flow of coolant, utilization of chip 
breaker, work-holding devices and selection of tool type belong to the second 
group. The third group includes machine repeatability, machine vibration and 
damping, cutting temperature, chip formation and chip exit speed, thermal expan-
sion of machine tool and power consumption; room temperature, humidity, dust 
content in the air and fluctuation in the power source are involved in the fourth 
group. Among these four groups of input variable, the major variable can be 
measured and controlled during machining process. Though the other variables are 
not directly involved and uncontrolled during machining but their effect cannot be 
neglected to obtain a desired surface roughness. In a specific machining condition, 
these variables are assumed to be fixed at a particular state. 

Various approaches have been proposed to model and simulate the machining 
processes. Analytical methods, which are generally based on the established 
science principles, are probably the first modeling approach. Experimental or em-
pirical approaches use experimental data as the basis for formulating the models. 
Mechanistic and numerical methods integrate the analytical and empirical me-
thods, generally by the use of modern computer techniques. 

Due to the complex and nonlinear relationship among the input–output variables, 
influence of uncontrollable parameters and involvement of random aspect, predic-
tion of an output of machining processes using mathematical/analytical approaches 
is not accurate. This leads to the development of empirical equations for a particular 
machine tool, machining parameters and work piece-cutting tool material combina-
tion. Empirical models do not consider the underlying principles and mathematical 
relationships. These are usually obtained by performing statistical analysis or 
through the training of data-driven models to fit the experimental data [1]. 

The significant drawback of empirical models is their sensitivity to process var-
iation though they have the advantages of accuracy due to the use of experimental 
data. The accuracy of a model degenerates rapidly due to the variation of experi-
mental data as the machining conditions deviate from the experimental settings. In 
addition, quality characteristics of machined parts exhibit stochastic variations 
over time due to changes in a machine tool structure and the environment. There-
fore, the modeling techniques should have enough capability to adapt the varia-
tions in machining process. Most of the statistical process control models do not 
account for time-varying changes. Involvement of uncertainty and imprecision in 
machining processes is another aspect affecting the variation of machining output. 
In such cases, techniques of modeling using fuzzy logic are most useful because 
fuzzy logic is a powerful tool for dealing with imprecision and uncertainty [2]. 
The basic concept of fuzzy logic is to categorize the variables into fuzzy sets with 
a degree of certainty in the numerical interval (0 and 1), so that ambiguity and  
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vagueness in the data structure and human knowledge can be handled without  
constructing complex mathematical models.  Moreover, fuzzy logic-based control 
system has the capability to adapt the variations of a process by learning and ad-
justing itself to the environmental changes by observing current system behavior. 

Fuzzy logic is an application of fuzzy set theory, and was first proposed by 
Prof. L.A. Zadeh [3]. Fuzzy logic rules, which are derived based on fuzzy set 
theory, are used in fuzzy inference system toward formulating a rule-based model 
(called fuzzy rule-based model, FRBM). The performance of a FRBM mainly de-
pends on two different aspects: structure of fuzzy logic rules and the type/shape of 
associated fuzzy subsets (membership function distributions, MFDs) those consti-
tute the knowledge base (KB) of FRBM. Manually constructed KB of a FRBM 
may not be optimal in many cases since it strongly demands a thorough know-
ledge of the process which is difficult to acquire, particularly in a short period of 
time. Therefore, design of an optimal KB of a fuzzy model needs the help of other 
optimization/learning techniques. Genetic algorithm (GA), a population-based 
search and optimization technique is used by many researchers to design the op-
timal KB of FRBM for various processes. The systems of combining Fuzzy logic 
and genetic algorithm are called genetic-fuzzy systems. 

4.2   Fuzzy Logic 

4.2.1   Crisp Set and Fuzzy Set 

A set (A) is a collection of any objects (a1, a2, a3, ….., an), which according to 
some law can be considered as a whole and it is usually written as 

A={a1, a2,…..,an} or 
A={x |P(x)}, means A is the set of all elements (x) of universal set X for which 

the proposition P(x) is true (e.g. P(x) > 3). 

In crisp set, the function XA(x) (so-called characteristic function) assigns a val-
ue of either 1 or 0 to each individual object, x in the universal set, thereby discri-
minating between members and non-members of the crisp set, A under considera-
tion. That means there exists no uncertainty or vagueness in the fact that the object 
belongs to the set or does not belong to the set. Set A is defined by its characteris-

tic function, ( )xXA  as follows  





∉
∈

=
Afor x 0

Afor x 1
(x)XA  

In the year, 1965, Lotfi A. Zadeh [3] proposed a completely new and elegant 
approach to vagueness and uncertainty in a seminal paper, called fuzzy set theory. 
In his approach an element, x can belong to a set to a degree, k (0 ≤ k ≤ 1) in con-
trast to classical set theory where an element must definitely belong or not to a set. 
A fuzzy set, Ã is usually written as Ã={x, μÃ(x) |x∈X}  
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The function μÃ (x) is called membership function (MF) of the (fuzzy) set Ã 
and defined as μÃ(x)→[0,1]. The value of μÃ(x) is called the degree of member-
ship of x in the fuzzy set Ã. 

4.2.2   Fuzzy Membership Function 

Graphically, a membership function is represented as a curve (as shown in Figure 4.1) 
that defines how each element in the set is mapped to a membership value (or degree 
of membership) between 0 and 1. There are many ways to assign membership values 
or functions to fuzzy variables compared to that of assigning probability density func-
tion to random variables. The membership function assignment process can be intui-
tive or based on some algorithmic or logical operations. 
 

 

Fig. 4.1. A graphical representation of fuzzy set 

4.2.2.1   Some Key Properties of Fuzzy Set 

i) Having two fuzzy sets Ã and B ̃ based on X, then both are equal if 
their membership functions are equal, i.e. 

( ) ( )xμB
~xμA

~B
~

A
~ =⇔=  for all x∈X 

ii) Given a fuzzy set Ã defined on X and any number α∈[0,1], the α-
cut, αÃ, and the strong α-cut, α+Ã, are the crisp sets: 

( ){ }αxA
~

|xA
~α ≥=  and ( ){ }αxA

~
|xA

~α >=+  

iii) The height of a fuzzy set is the largest membership grade obtained 

by any element in that set i.e., ( ) ( )xμmaxA
~

height A
~

Xx∈
=  

iv) The crossover points of a membership function are defined as the 
elements in the universe for which a particular fuzzy set A has values 

equal to 0.5, i.e., for which ( ) 0.5xμA
~ =  
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v) A fuzzy set Ã is called normal when ( ) 1A
~

height =  and subnor-

mal when ( ) 1A
~

height < . 

vi) The support of a fuzzy set Ã is the crisp set that contains all the ele-
ments of X that have non-zero membership grades, i.e. 

( ) ( ){ }0x|XxA
~

support μ
A
~ >∈= , refer to Figure 4.1. 

vii) The core of a normal fuzzy set Ã is the crisp set that contains all the 
elements of X that have the membership grades of one in Ã, i.e. 

( ) ( ){ }1xμ|XxA
~

 core A
~ =∈= , refer to Figure 4.1. 

viii) The boundary is the crisp set that contains all the elements of X that 

have the membership grades of ( ) 1xμ0 A
~ <<  in Ã, i.e. 

( ) ( ){ }1xμ0|XxA
~

boundary A
~ <<∈= , refer to Figure 1. 

ix) Having two fuzzy sets Ã and B ̃ based on X, then both are similar if 

( ) ( )B
~

 coreA
~

 core =  and ( ) ( )B
~

support A
~

support = . 

x) If the support of a normal fuzzy set consists of a single element xo of 

X, which has the property ( ) ( ) { },xA
~

 coreA
~

support 0==  this set is 

called a singleton. 
xi) A fuzzy set Ã is said to be a convex fuzzy set if for any elements x, y 

and z in fuzzy set Ã, the relation x<y<z implies that 

( ) ( ) ( )[ ]zμ,xμminyμ A
~

A
~

A
~ ≥ . The intersection of two convex 

fuzzy sets is also a convex fuzzy set, i.e., if Ã and B ̃ are convex 

fuzzy sets, then B
~

A
~ ∩  is also convex fuzzy set. 

xii) If Ã is convex single-point normal fuzzy set defined on the real line, 
then Ã is often termed as a fuzzy number. 

xiii) Any fuzzy set Ã defined on a universe X is a subset of that universe. 

4.2.2.2   Various Types of Fuzzy Membership Function and Its Mathematical 
Representation  

The common types of membership function (MF) used in FRBM are triangular, 
(higher order) polynomial, trapezoidal, Gaussian, etc.  

Trapezoidal MF: Mathematically a trapezoidal MF can be represented as shown in 
Figure 4.2(a). 

( )

cd

xd
1

ab

ax
0

dc,b,a,x,μA
~

−
−

−
−

=  for       

dxc

cxb

bxa

dxa,x

≤≤
<<
≤≤
><
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The controlling parameters toward the configuration of trapezoidal MF (as 
shown in Figure 4.2(a)) are b1=b-a, b2=c-b and b3=d-c. 

Polynomial MF: A polynomial MF can be expressed mathematically as shown in 
Figure 4.2(b):  

 

( )

)b(x,f

1

)b(x,f

0

dc,b,a,x,μ

22

11

A
~ =  for       

cxb

bx

bxa

cxa,x

≤<
=

<≤
><

 
 
where the functions f1 and f2 are the polynomial type. Polynomial MF is treated as 
triangular type MF when the functions, f1 and f2 of the above empirical expression 
are linear. f1 and f2 may be also exponential or any other kind of functions.  

The controlling parameters toward the configuration of polynomial MF (as 
shown in Figure 4.2(b)) are b1=b-a and b2=c-b. Mathematically, the second order 
polynomial function can be represented as μÃ(x)= c0x + c1x

2, where x is the  
distance measured along the base-width of membership function distributions,  
μÃ(x) is the fuzzy membership function value and, c0 and c1 are the coefficients 
which can be determined based on some specified conditions, such as  





=
=

=
0at x 0

bat x 1
μ

1

A
~  and ,bat x 0,

x
μ

1
A
~

==
∂

∂
 

 

  
                               (a)                                                            (b) 

 
 

Fig. 4.2. Membership function configuration (a) Trapezoidal (b) Polynomial 

Finally the coefficients of the 2nd order polynomial function become 
1

0
b

2
c =  

and 
1
21

b

1
c −= . 
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From Figure 4.2, it has been seen that for a given value of support of the mem-
bership function of a fuzzy set, only one parameter, b1 is required to describe tri-
angular and polynomial type MFDs (membership function distributions) with 3 
fuzzy sub-sets, whereas two parameters, b1 and b2 are required to explain the 
(semi) trapezoidal MFDs with two fuzzy subsets. The number of controlling pa-
rameter increases with increasing the number of fuzzy sub-sets involved in the 
MFDs. 

4.2.3   Fuzzy Set Operators 

Defining the fuzzy sets Ã and B ̃ on the universe X, for a given element x of the 
universe, the fuzzy set operations, intersection (t-norm), union (t-conorm) and 
complement are expressed as follows and the corresponding Venn diagrams are 
shown in Figure 4.3. 
 

Intersection:  ( ) ( ) ( )xμxμxμ B
~

A
~

B
~

A
~ ∧=  

Union:  ( ) ( ) ( )xμxμxμ B
~

A
~

B
~

A
~ ∨=  

Complement:  ( ) ( )xμ1xμ A
~

A
~ −=

 

 

 

Fig. 4.3. (a) Intersection of fuzzy sets Ã and B ̃ (b) Union of fuzzy sets Ã and B̃ (c) Com-
plement of fuzzy set Ã 

4.2.4   Classical Logical Operations and Fuzzy Logical Operations 

Classical logic deals with classical proposition (P) which is a collection of elements, 
that is, a set, where all the truth values, T(P) for all elements in the set are either all true 
(1) or all false (0), and follows the two-valued logical operations and Boolean algebra.  

Let the sets A and B are defined from universe X and the proposition, P measures 
the truth of the statement that an element, x from the universe X is contained in set, 
A and Q measures the truth of the statement that this element, x is contained in set,  
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B, i.e., ( ) 1;PT A, xif =∈  ( )  0PT otherwiase =  and ( ) 1;QT B, xif =∈  

( ) 0QT otherwise = . There are five logical connectives (defined as follows) used 

to combine multiple simple propositions and to form new propositions: 

Disjunction (OR): 

   ( ) ( ) ( )( )QT,PTmaxQPT Hence, B,or xA  x:QP =∨∈∈∨  

Conjunction (AND): 

  ( ) ( ) ( )( )QT,PTminQPT Hence, B,or xA  x:QP =∧∈∈∧  

Negation: ( ) ( ) ( ) ( ) 1PT then 0,PT if 0;PT then 1,PT If ====  

Implication: ( ) ( )QPTQPT Hence, B,or xA  x:QP =→∈∉→  

Equivalence: ( ) ( ) ( ) ( )
( ) ( )




≠
=

=↔↔
QTPTfor 0,

QTPTfor  1
PT:QP Q  

For two different universes of discourse where P is a proposition described by 
set A, which is defined on universe X, and Q is a proposition described by set B, 
which is defined on universe Y. Then the implication P→Q (which is also equiva-
lent to the linguistic rule form, IF A THEN B) can be represented in set-theoretic 
terms by the relation, R which is defined by 

( ) ( )

YB and Yy  whereB,y THEN

XA and X x whereA, xIF

B THEN A, IFYABAR

⊂∈∈
⊂∈∈

≡××= 
 

The other connectives are applicable to two different universes of discourse as 
usual. Classical logical compound propositions that are always true irrespective of 
the truth values of the individual simple propositions are called tautologies. 

Fuzzy propositional logic generalizes the classical propositional operations by us-
ing the truth set [0, 1] instead of either 1 or 0. The above logical connectives are also 
defined for a fuzzy logic.  Like classical logic, the implication connective in fuzzy 
logic can be modeled in rule-based form: P̃→Q̃ is, IF x is Ã THEN y is B̃ (where IF 
part is called antecedent and THEN part is called consequent) and it is equivalent to 

the fuzzy relation ( ) ( )YA
~

B
~

A
~

R
~ ××=   where the fuzzy proposition P̃ is as-

signed to fuzzy set Ã which is defined on universe X, and the fuzzy proposition Q̃ is 
described by fuzzy set B̃, which is defined on universe Y. The membership function 
of R̃ is expressed by ( ) ( ) ( )( ) ( )( )[ ]xμ1 ,yμxμmaxyx,μ A

~
B
~

A
~

R
~ −∧= . The im-

plication connective can be defined in several distinct forms. While these forms of 
implication are equivalent in classical logic, their extensions to fuzzy logic are not 
equivalent and result in distinct classes of fuzzy implications.   
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4.2.5   Fuzzy Implication Methods 

The fuzzy implication operation is used to find the fuzzy relation R̃ between  
two fuzzy sets Ã and B ̃ which are defined on the universes of discourse X and Y, 
respectively based on the rule IF x is Ã, THEN y is B ̃, where x∈X and y∈Y. Ma-

thematically, the fuzzy relation, R̃ is defined as ( ) ( ) ( )[ ]yB,xAyx,R
~ ℘= , where 

℘ is called the implication operator. Besides the implication method as presented 

in Section 4.2.4, there are other forms of implication operator, among them min 
and product implication operators are mostly used in fuzzy inference system for 
practical applications. The membership function values of fuzzy relation R̃ de-
fined on the Cartesian product space YX ×  using min and product implication 
operators are obtained by the Equation (4.1) and Equation (4.2), respectively and 
graphically represented in Figure 4.4. 

min:                              ( ) ( ) ( )[ ]y,xminyx, μμμ
B
~

A
~

R
~ =                              (4.1) 

product:                              ( ) ( ) ( )yxyx, μμμ
B
~

A
~

R
~ •=  (4.2) 

In Figure 4.4, the MF value, 0.7 of μB̃(x) corresponds to rule weight obtained after 
decomposition of the IF part of rule. 

 

  
                           (i)                                                          (ii) 

 
Fig. 4.4. Graphical representation of fuzzy implication (i) min (ii) product 

 

4.2.6   Decomposition of Compound Rules 

The most common techniques for decomposition of compound linguistic rules into 
simple canonical forms are described as follows: 
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Multiple conjunctive antecedents: IF x is Ã1 AND x is Ã2 …. AND x is ÃL THEN 
y is B ̃S 

This fuzzy rule can be written in canonical form as: IF ÃS THEN B ̃S, 
where the fuzzy subset ÃS is defined as A

~......A
~

A
~

A
~

L21S = ) with the 

membership function ( ) ( ) ( ) ( )[ ]xμ..,,.........xμ,xμminxμ
A
~

A
~

A
~

A
~

L21S
=  obtained by 

the definition of the fuzzy intersection operation. 

Multiple disjunctive antecedents: IF x is Ã1 OR x is Ã2 …. OR x is ÃL THEN y is B̃S 
Assuming a new fuzzy subset ÃS (as A

~......A
~

A
~

A
~

L21S = ) expressed by 

means of membership function ( ) ( ) ( ) ( )[ ]xμ..,,.........xμ,xμmaxxμ
A
~

A
~

A
~

A
~

L21S
=  

based on the definition of the fuzzy union operation, the compound rule may be 
written in canonical form as: IF ÃS THEN BS̃. 

4.2.7   Aggregation of Rule  

The technique of obtaining the overall rule consequent by combining the individu-
al consequents contributed by each rule in the rule base (which comprises multiple 
rules) is known as aggregation of rules. The most popular aggregation techniques 
of fuzzy rules are as follows: 

Conjunctive system of rules (MIN): In the case of a system of rules that must be 
jointly satisfied, the rules are connected by AND connectives. In this case, the ag-
gregated consequent, y is obtained by fuzzy intersection of all individual rule con-
sequents (y1, y2, …, yr), as y......yyy r21 =  which is defined by the 

membership function: ( ) ( ) ( ) ( )[ ]yμ..,,.........yμ,yμminyμ yyyy r21
=  for y∈Y. 

Disjunctive system of rules (MAX): For the case of a disjunctive system of rules 
where the satisfaction of at least one rule is required, the rules are connected by the 
OR connectives. In this case, the aggregated consequent, y is obtained by fuzzy un-
ion of the individual rule consequents as y......yyy r21 =  which is de-

fined by the membership function: ( ) ( ) ( ) ( )[ ]yμ..,,.........yμ,yμmaxyμ yyyy r21
=  

for y∈Y. 

4.2.8   Composition Technique of Fuzzy Relation 

Let R and S be the relations that relate elements from universe X to universe Y, and 
elements from universe Y to universe Z, respectively. Now, composition is an op-
eration to find another relation, T that relates the same elements in universe X  
that R contains to the same elements in universe Z that S contains. The composition 
operation of fuzzy relation reflects the inference of a fuzzy rule-based system and is  
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expressed by R
~

A
~

B
~ = , where Ã is the input, or antecedent defined on the un-

iverse X, B ̃is the output or consequent defined on universe Y and R̃ is a fuzzy rela-
tion characterizing the relationship between specific input(s), x and specific out-
put(s), y. Among various methods of composition of fuzzy relation, max-min and 
max-product are the most commonly used techniques and defined by membership 
function-theoretic expressions as follows.   

max-min: ( ) ( ) ( )[ ]{ }yx,μ ,xμminmaxyμ R
~

A
~

Xx
B
~

∈
=  (4.3) 

max-product: ( ) ( ) ( )[ ]yx,μR
~ xμA

~maxyμ
Xx

B
~ •=

∈
 (4.4) 

The method of composition of fuzzy relation basically includes the implication 
method and technique of aggregation of fuzzy rule. In the above methods of com-
position of fuzzy relation, max is the aggregation technique of rule, whereas min 
and product are the implication methods used in Equation (4.3) and Equation (4.4), 
respectively. 

4.2.9   Fuzzy Inferences 

Inference is a process of combining the measurement of input(s)/antecedent(s) 
with one or more relevant fuzzy rules in a proper manner to infer the out-
put(s)/consequent(s). In order to demonstrate the inference method, consider a sys-
tem of one input (antecedent) and a single output (antecedent) described by two 
IF-THEN rules as follows: 
 

Rule 1: if input1 is Ã1, then output1 is B̃1 
Rule 1: if input1 is Ã2, then output1 is B̃2 

 

Now given the IF-THEN rules (Rule 1 and Rule 2) and a fact/measurement “In-
put1 is Ã” it is inferred that “output1 is B ̃”, where Ã, Ã1∈₣(߯) and B ̃, B1̃∈₣(ߓ), 
where ₣( ߯) and ₣( ߓ) denote the sets of all ordinary fuzzy sets that can be defined 
within the X and Y, respectively. ߯ and ߓ are the sets of values (x and y) of va-
riables, input1 (condition variable) and output1 (action variable), respectively. In 
order to determine B, method of interpolation is used which consists of two steps 
explained as follows: 

Step 1: Calculate the degree of consistence, rj(x) between the given 
fact/measurement and the antecedent of each rule, j in terms of the height of inter-
section of the associated sets Ã1 and Ã. rj(x) is expressed using the standard fuzzy 
intersection and the definition of height of a fuzzy set ( described in Section 
4.2.2.1) as follows: 
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Step 2: Calculate the conclusion B ̃ by truncating each set Bj̃ by the value of rj(x) 
(i.e., min implication method) which expresses the degree to which the antecedent 
Ãj is compatible with the given fact Ã1, and taking the union of the truncated sets 
as the rules are satisfied independently (i.e., max aggregation method) . 

( ) ( ) ( )[ ]yμ ,xrmin maxyμ
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1,2jB
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j=
=  for all y∈Y (4.6) 

The above steps are graphically presented in Figure 4.5. 
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which is equivalent to the expression of max-min composition presented in Equa-
tion (4.3) and accordingly, this inference method is also called max-min inference 
method.  In the above step 2, if product implication technique and max aggrega-
tion method are used, we can obtain the expression (defined in Equation 4.7) simi-
lar to max-product composition (Equation (4.4)). Moreover, the above inference 
method may also be applicable to the system with any number of fuzzy rule (j) 
and inputs (Input1, input2). In case of multiple inputs/antecedents of fuzzy rule, 
the (effective) degree of consistence, rj(x) between the given facts/measurements 
and the antecedents of each rule is obtained by first finding the degree of consis-
tence between each fact/measurement and the related antecedent of the rule (using 
Equation (4.5)), then adopting the technique of decomposition of compound rules 
according to the type of logical connectives (AND or OR) as explained graphical-
ly in Figure 4.6 for the following two IF-THEN rules as follows: 
 

Rule 1: if input1 is Ã11 AND input2 is Ã12 then output1 is B1 
Rule 1: if input1 is Ã21 AND input2 is Ã22 then output1 is B2 
Fact: input1 is Ã1 AND input2 is Ã2 
Conclusion: output1 is B 
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Fig. 4.5. Illustration of the method of interpolation in fuzzy inferences 
 

 

 

Fig. 4.6. Illustration of the method of interpolation in fuzzy inferences with multiple inputs 
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In the above illustration of fuzzy inference, we have considered fuzzy value (Ã) 
for the variable input1. Figure 4.7 demonstrates the above (max-min) inference 
method for a two input and a single output system where the values of input va-
riables are considered as crisp type (for instance, Fact: input1 is x1 AND input2 is 
x2) and the (max-product) inference method for the same system is demonstrated 
in Figure 4.8. 

 

 

Fig. 4.7. Graphical representation of max-min inference method with crisp type of input 
values  

 

Fig. 4.8. Graphical representation of max-product inference method with crisp type of input 
values  
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4.2.10   Fuzzification and De-fuzzification 

The fuzzification is a process of transforming the crisp value into a grade of mem-
bership using a membership function of the associated fuzzy set as shown in Fig-
ure 4.9. Figure 4.9 demonstrates that the given (crisp) value x0 of variable x be-
longs to a grade of ( ) 0.8xμ

A
~ 0

1

=  to the fuzzy set Ã1 and with a grade of 

( ) 0.2xμ
A
~ 0

2

= to the fuzzy set Ã2. Fuzzification is required in the fuzzy inference 

system when the values of input variables to system are considered as crisp type 
(as described in Figure 4.7/Figure 4.8). 

 

 

Fig. 4.9. Fuzzification method 

 

Defuzzification is the conversion of a fuzzy quantity to a crisp quantity analog-
ous to fuzzification. Defuzzification is used in fuzzy inference system to convert 
the fuzzy value of the output (i.e., B ̃ of output1 in Section 4.2.9) to a crisp value 
(*y). Among various defuzzification methods available in the literature, centroid 
method (also called center of area (COA) or center of gravity) is most popular, 
which is mathematically expressed by Equation (4.8) and graphically expressed in 
Figure 4.10: 
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dyy
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B
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~
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Fig. 4.10. Centroid defuzzification method 

4.2.11   Fuzzy Rule-Based Model 

4.2.11.1   Working Principle of a Fuzzy Rule-Based Model 

A fuzzy rule base, a fuzzy inference engine, fuzzification and de-fuzzification: 
these are the four modules involved in a FRBM (Fuzzy rule-based model). Figure 
4.11 shows a schematic diagram explaining the working cycle of a FRBM. The 
following steps are involved in the working cycle of a FRBM: 
 

• The output(s) (action) and input(s) (condition) variables needed to control a 
particular process are chosen and measurements are taken for all the condition 
variables. 

• The measurements taken in the previous steps are converted into appropriate 
fuzzy sets to express measurement uncertainties (called fuzzification as de-
scribed in Section 4.2.10). 

• The fuzzified measurements are then used by the interference engine to eva-
luate the control rules stored in the rule base and a fuzzified output is deter-
mined (as discussed in Section 4.2.9). 

• The fuzzified output is then converted into a single (crisp) value (called a de-
fuzzification as illustrated in Section 4.2.10). The de-fuzzified value(s) 
represent action(s)/prediction(s) to be made by the FRBM in controlling a 
process. 

The kernel of a FRBM that is the knowledge base (KB) is constituted by rule 
base, RB (a set of fuzzy logic rules) and membership functions/membership func-
tion distributions, MFDs (fuzzy subsets). Two types of fuzzy logic rules (FLRs) 
that are commonly used for constructing the RB of a FRBM are Mamdani-type 
and TSK-type. In both types of FLRs, the input variables are expressed by linguis-
tic terms (fuzzy subsets) in the rule antecedent part. But the main difference be-
tween these two types of fuzzy rules lies in the rule consequent part. The output 
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variable in Mamdani-type FLR is defined by linguistic term also, whereas in TSK-
type FLR, it is not defined by linguistic term rather it is defined by a linear combi-
nation of the input variables. The shape of fuzzy subsets (MFDs of input-output 
variables) is also an important factor that is to be decided appropriately to achieve 
the best performance of a FRBM for a typical process. 

 

 

 

Fig. 4.11. A schematic showing the working cycle of a FRBM 

4.2.11.2   Various Types of Fuzzy Rule-Based Model 

Mamdani-type [4]: 
The structure of Mamdani-type fuzzy logic rule is expressed as follows: 

IF x1 is A1 AND x2 is A2 AND……..AND xn is An THEN y is B 

where xi (i=1, 2, ……, n) are input variables and y is the output variable. A1, A2, 
…, An and B are the linguistic terms (say, Low, Medium, High, etc.) used for the 
fuzzy subsets (membership function distributions) of the corresponding input and 
output variables, respectively. 

Sugeno-type [5]: 
The Sugeno-type fuzzy rule is defined as follows: 

IF x1 is A1 AND x2 is A2 AND……..AND xn is An THEN y =f(x1, x2, .., xn) 

Unlike Mamdani-type, the rule consequent/output is expressed by a function of the 
input variables. 

Tsukamoto [6]: 
The Tsukamoto -type fuzzy rule is defined as follows: 

IF x1 is A1 AND x2 is A2 AND……..AND xn is An THEN y =z 

where z is a monotonical membership function. 
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4.2.11.2.1   Mamdani-Type Fuzzy Rule Based Model 
The output of a Mamdani-type FRBM whose rule base (RB) is constructed using 
Mamdani-type fuzzy logic rule is obtained as follows (when centroid method is 
considered for defuzzification): 




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=

=
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where Aαr is the area of fuzzy subset of output variable, covered by α membership 
value (equivalent to degree of consistence as obtained in Step 1 in Section 4.2.9) that 
is obtained by rth rule after fuzzy inference method. CAαr is the center distance of the 

area, Aαr . Rl
f  ( RR f

l
f ⊆ ) is the number of rules fired out of a total of Rf rules 

present in the rule base for a set of input values.  
In order to determine the output in Equation 4.9, all the four modules (fuzzy 

rule base, a fuzzy inference engine, fuzzification and de-fuzzification) as men-
tioned in Section 4.2.11.1 are involved in a Mamdani-type FRBM. The perfor-
mance of a Mamdani-type fuzzy model is relied on the appropriate fuzzy subsets 
of rule consequents and antecedent, and the type of fuzzy subsets (membership 
function distributions) considered for input-output variables. Therefore, the tasks 
of designing FRBMs with Mamdani-type FLRs are:  

• construction of an optimal set of rules (Rf) with its appropriate outputs (B),  
• selection of shape of fuzzy subsets/MFDs for both the input and output va-

riables  
• tuning of MFDs. 

4.2.11.2.2   TSK-Type Fuzzy Rule-Based Model 
The TSK-type fuzzy logic rule is defined as follows [5, 7]: 

If x1 is A1 and x2 is A2 and………………….and xn is An, then 

( )xfcy n1,...,j

K

1j
j=

=
 

where A1, . . . , An are the fuzzy subsets of the respective input variables, x1, …, xn. 
The output function of fuzzy rule is a linear function (say, polynomial) in the form 
of 

( ) ( ) ( ) ( )xfc.....xfcxfcxfcy n1,...,Kkn1,..,22n1,..,11n1,...,j

K

1j
j +++==

=
      (4.10) 

The overall output of the TSK-type fuzzy model can be obtained for a set of inputs 
(x1, x2, …., xn) using the following empirical expression. 
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∏  is the product representing a conjunction decomposition method. 
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 is the output function of rth rule and cr

j  are the function coeffi-

cients of the corresponding rule consequent, where K is the number of coefficients 
present in the consequent function of each rule. 

Unlike Mamdani-type FRBM, TSK-type FRBM includes only the fuzzy rule 
base, a fuzzy inference engine, and fuzzification module to determine the output in 
Equation (4.11). The performance of a TSK-type fuzzy model is mainly depended 
on the optimal values of the rule output (consequent) functions which are de-
pended on the coefficients (cj), the exponential parameters of the input variables 
(not shown in the Equation (4.10)) and choice of the fuzzy subsets (membership 
function distributions). Thus, the steps of developing FRBM with TSK-type FLRs 
are:  

• construction of an optimal set of rules (Rf) with the appropriate structures of 
rule output/consequent functions  

• selection of shapes of fuzzy subsets/MFDs of input variables 
• determination of optimal values of coefficients and power terms of rule conse-

quent functions 
• tuning of MFDs of the input variables. 

4.3   Genetic Algorithm 

Genetic algorithm is a search and optimization technique which mimics the prin-
ciple of natural selection and natural genetics [8] to find the best solution for a 
specific problem. The genetic algorithm is an approach to solve problems which 
are not yet fully characterized or too complex to allow full characterization, but 
for which some analytical evaluation or physical interpretation to evolutes the per-
formance of a solution, is available. GA is a stochastic global search method that 
mimics the metaphor of natural biological evolution. Genetic algorithms operate 
on a population of feasible solutions by applying the principle of survival of the 
fittest to produce better approximations to a solution. At each generation, a new 
set of approximations is created by the process of selecting individuals according 
to their level of fitness in the problem domain and breeding them together using 
operators borrowed from natural genetics. This process leads to the evolution of 
populations of individuals that are better suited to their environment than the indi-
viduals that they were created from, just as in natural adaptation.  
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The basic concept of a genetic algorithm is to encode a potential solution to a 
problem as a series of parameter strings, chromosomes, composed over some al-
phabet, so that chromosome values (genotypic) are uniquely mapped onto the de-
cision variable (phenotypic). A single set of parameter string or chromosome is 
treated as the genetic material of an individual solution. Initially a large population 
of candidate solutions is created with random parameter values. These solutions 
are essentially bred with each other for several simulated generations under the 
principle of survival of the fittest, meaning that the probability that an individual 
solution will pass on some of its parameter values to subsequent children is direct-
ly related to the fitness of individual i.e. how good that solution is relative to the 
others in the population.  

Breeding takes place through use of recombination operators such as crossover, 
which simulates basic biological cross-fertilization, and mutation, essentially the 
introduction of noise. The simple application of these operators with a reasonable 
selection mechanism has produced surprisingly good results over a wide range of 
problems. After recombination and mutation, the individual strings are then, if ne-
cessary, decoded, the objective function evaluated, a fitness value assigned to each 
individual and individuals selected for mating according to their fitness, and so the 
process continues through subsequent generations. In this way, the average per-
formance of individuals in a population is expected to increase, as good individu-
als are preserved and bred with one another and the less fit individuals die out. 
The GA is terminated when some criteria are satisfied, e.g. a certain number of 
generations, a mean deviation in the population, or when a particular point in the 
search space is encountered. 

4.3.1   Genetic Algorithms and the Traditional Methods 

The working principle of GA clearly indicates that the GA significantly differs in 
some very fundamental way from other traditional search and optimization me-
thods. The four major significant differences are:  
 

• GAs search a population of solutions instead of a single point solution as in tra-
ditional search methods.  

• GAs do not use derivative-based algorithm. It does not use any derivative in-
formation or other auxiliary knowledge; only the objective function and corres-
ponding fitness levels influence the directions of search. 

• GAs use probabilistic transition rules instead of deterministic principle.  
 

It is important to note that the GA provides a number of potential solutions to a 
given problem and the choice of final solution is left to the user. In cases where a 
particular problem does not have one individual solution, for example a family of 
Pareto-optimal solutions, as is the case in multi-objective optimization and sche-
duling problems, then the GA is potentially useful for identifying these alternative 
solutions simultaneously.  
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4.3.2   Simple Genetic Algorithm 

The schematic shown in Figure 4.12 illustrates the structure of a simple genetic 
algorithm (SGA) as described by Goldberg [8]. GA starts with initial random pop-
ulation consisted of potential solution points called individuals. The decision is 
made whether the individual is good or bad for the given problem based on the 
fitness obtained from the evaluation of objective function. Once the fitness value 
is evaluated and assigned to each individual, then initial population meets the first 
genetic operator, selection process. This operator provides more chances of sur-
vival for the strong individuals and to decay the weakest ones according to their 
fitness. 
 

 

Fig. 4.12. A schematic representation of simple genetic algorithm outline population repre-
sentation and initialization  

Next, crossover operator is performed on selected individuals to build the new 
individuals by combining the existing ones. Crossover follows reproduction and 
allows two individuals to swap their structures depending on the probability fac-
tor. This result in the creation of a pair of offspring solution containing characte-
ristics of their parents. Then the mutation operator is applied to supply diversity in 
the population. As the fitness of a population may remain static for a number of 
generations before a superior individual is found, the application of conventional 
termination criteria becomes problematic. A common practice is to terminate the 
GA after a pre-defined number of generations and then test the quality of the best 
members of the population against the problem definition. If no acceptable solu-
tions are found, the GA may be restarted or a fresh search initiated with more 
number of generations. 
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4.3.2.1   Coding and Initialization of GA 

4.3.2.1.1 Binary Coding 
The most commonly used representation of chromosomes in the GA is that of the 
single-level binary string. Here, each decision variable (say, d and h) in the para-
meter set is encoded as a binary string (sd and sh, respectively) and these are con-
catenated to form a chromosome as shown in Figure 4.13. Binary-coded GAs are 
not restricted to use only integer and for the given lower bound (dmin) and upper 
bound (dmax) of a variable (say, d), the value of the variable (d) is calculated from 
the GA-string using the decoding scheme represented by Equation (4.12). 

( )sDV
12l
dd

dd d

minmax
min

d −
−+=                                                                         (4.12) 

where ld is the string length used to code the d variable and DV(sd) is the decoded 
value of the string sd . This mapping function allows 

 

Fig. 4.13. A schematic representation of a chromosome with 5 bits for Sd and 5 bits for Sh 

4.3.2.1.2   Real Coding 
For a continuous search space, binary-coded GA faces many problems such as 
 

• Hamming cliffs associated with certain strings (e.g., 01111 and 10000) from 
which a transition to a neighboring solution requires the alteration of many bits.  

• Inability to achieve any arbitrary precision in the optimal solution. The more the 
required precision, the larger is the string length, results in more computational 
complexity. 

In real coding, the variables are directly represented in real type as  
d

 8 

h

 25 . 

4.3.2.1.3   Initialization of GA 
Initial population of a GA is normally determined at random. With a binary popu-
lation of Nind individuals whose chromosomes are Lind bits long, Nind × Lind ran-
dom numbers uniformly distributed from the set {0, 1} would be produced.  

4.3.2.2   Objective Function and Fitness Function 

The objective function is used to provide an analytical measure of how individuals 
have performed in the problem domain. The objective function, f is a function of  
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decision variable(s). The fitness value of an individual/solution in the population 
is determined based on the fitness function which consists of the objective func-
tion value and the penalty value for constraint violation which is determined by a 
penalty function, fcostraint. Thus, the fitness value is calculated as follows: 
 

Fitness value= f +fcostraint ,  
 

Since GAs mimic the survival-of-the-fittest of the nature to make a search 
process, GAs are suitable for maximization problem where objective function is 
directly used as fitness function F(x). In the case of a minimization problem, the 
fit individuals will have the lowest numerical value of the associated objective 
function. This situation is handled using a conversion of the objective function in-
to an equivalent maximization problem and used as fitness function so that the op-
timum point remain unchanged. 

4.3.2.3   Selection 

Selection guides the tool to find the optimized solution by preferring individu-
als/members of the population with higher fitness over one with lower fitness. It is 
the operator which generates the mating pool. This operator determines that the 
number of times a particular individual will be used for reproduction and the 
number of offspring that an individual will produce. Some of the popularly used 
selection methods are as follows:  

Roulette Wheel Selection Methods: Roulette wheel selection scheme chooses a 
certain individual with a probability proportional to its fitness. 
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where [ ]Ip tj,  is the probability of getting selected of any jth individual at a genera-

tion t, ( )If tj,  and ( ) =
n

1k tk,If  are corresponding individual fitness and the sum of 

the fitness of the population with size n, respectively. 
The property as represented by Equation (4.13) is satisfied by applying a ran-

dom experiment that has some similarity with a generalized roulette game. In the 
roulette game, the slots are not equally wide that is, why different outcomes occur 
with different probabilities. Figure 4.14 gives a graphical representation of how 
this roulette wheel game works. 

Linear rank selection: In this plan, a small group of individuals is taken from the 
population and the individual with best fitness is chosen for reproduction. The size 
of the group chosen is called the tournament size. A tournament size of two is 
called binary tournament. 

 



168 A.K. Nandi
 

 

Fig. 4.14. Graphical representation of the Roulette wheel selection mechanism 

 

In addition another scheme for selection is applied along with all three selection 
schemes discussed above which is called ‘elitism’. The idea of elitism is to avoid 
the observed best-fitted individual dies out just by selecting it for the next genera-
tion without any random experiment. Elitism significantly influences the speed of 
the convergence of a GA. But it can lead to premature convergence also. 

4.3.2.4   Crossover (Recombination)  

The basic operator for producing new chromosomes in the GA is that of crossov-
er. Like natural reproduction, crossover produces new individuals so that some 
genes of a new child come from one individual while others come from the other 
individual. In essence, crossover is the exchange of genes between the chromo-
somes of the two parents. The process may be described as cutting two strings at 
a randomly chosen position and swapping the two tails. It is known as the single-
point crossover, and the mechanism is visualized in Figure 4.15. An integer posi-
tion, i is selected at random with a uniform probability between one and the 
string length, l, minus one (i.e., i∈[1, l-1]). When the genetic information is ex-
changed among the parent individuals (represented by the strings, P1 and P2) 
about this point, two new offspring (represented by the strings, O1 and O2) are 
produced. The two offspring in Figure 4.15 are produced when the crossover 
point, i=4 is selected. 

 

 

Fig. 4.15. A typical example of single point crossover 
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For multi-point crossover, multiple crossover positions (m) are chosen at ran-
dom with no duplicates and sorted into ascending order. Then the bits between 
two successive crossover points are exchanged between the two parents to pro-
duce two new offspring. The process of multi-point crossover is illustrated in Fig-
ure 4.16 with shaded color.  

 

 

Fig. 4.16. Typical example of multi-point crossover (with m=5) 

 
The idea behind multi-point crossover is that the parts of the chromosome re-

presentation that contributes to the most to the performance of a particular indi-
vidual may not necessarily be contained in adjacent substrings. Further, multi-
point crossover appears to encourage the exploration of the search space, thus 
making the search more robust. 

4.3.2.5   Mutation 

Mutation is nothing but deformation of the genetic information of an individual 
(solution) by means of some external influences. The bit-wise mutation operator 
changes a bit, 1 to 0, and vice versa, with a prescribed probability (called, muta-
tion probability) as shown in Figure 4.17. In real reproduction, the probability that 
a certain gene is mutated is almost equal for all genes. So, it is near at hand to use 
the mutation technique for a given binary string, where there is a given probability 
that a single gene is modified. The probability should be rather low in order to 
avoid chaotic behavior of the GA. 

 

 

Fig. 4.17. Mutation effect on offspring’s strings 
 

4.3.2.6   Termination of the GA 

Because the GA is a stochastic search method, it is difficult to formally specify 
convergence criteria. As the fitness of a population may remain static for a number 
of generations before a superior individual is found, the application of convention-
al termination criteria becomes problematic. A common practice is to terminate 
the GA after a pre-specified number of generations and then test the quality of the  
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best members of the population against the problem definition. If no acceptable 
solutions are found, the GA may be restarted or a fresh search can be initiated. At-
taining a pre-specified fitness function value or when best fitness of the population 
does not change appreciably over successive iterations may be also considered as 
a termination criteria.  

4.3.3   Description of Working Principle of GA 

The working principle of a (binary-coded) GA is described here with an engineer-
ing optimization problem, namely designing a can [9] as shown in Figure 4.18. 
The objective of the problem is to determine the optimum values of the diameter 
(d, in cm) and height (h, in cm) of the can in order to minimize its cost, f(d, h) 
subject to some constraints and the problem is defined as follows: 
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where c is the cost of the can material per square cm, which is taken as 0.005 and 
the minimum and maximum values of d and h are taken as, dmin=hmin=0 and 
dmax=hmax=31. 

Therefore, in this problem the number of decision variables is two (d and h). 
The population size of GA is considered as six and it is kept constant throughout 
the GA-operation. GA operates in a number of iterations until a specified termina-
tion criterion is satisfied and in the Figure 4.18, the maximum number of itera-
tion/generation (max_gen) is treated as the termination criteria.  

GA iteration starts with the creation of six random solutions which are treated as 
the parent solutions. The chromosome structure of each solution is the same as pre-
sented in Figure 4.13. Then, the fitness values of all the parent solutions in the popu-
lation are calculated using following fitness function (discussed in Section 4.3.2.2). 

( ) [ ] ( )
( ) ( )  

300h d,g if                               hd,f

300h d,g if h)g(d,-300Phd,f
  valueFitness p





>
≤×+

=          (4.14) 

where Pp is the penalty parameter and the value of Pp is taken as 25. After that se-
lection/reproduction (discussed in Section 4.3.2.3) operation is performed on the 
parent solutions based on the fitness values of solutions (as depicted in the binary 
tournament selection table in Figure 4.18) to form the mating pool. The number  
of solutions contained in the mating pool is to be equal to the number of parent  
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Fig. 4.18. Working principle of a genetic algorithm 

 

solution in order to maintain a constant population size through out the GA-iteration. 
After that, crossover operator (discussed in Section 4.3.2.4) is applied among the 
two randomly chosen solutions from the mating pool based on a given probability 
(crossover-probability, say 0.9). Then, bit-wise mutation (discussed in Section 
4.3.2.5) is carried out on each of the six solutions obtained after employing the cros-
sover operator using a given mutation probability (say 0.02) and produces six new 
(offspring) solutions. The objective function values corresponding to each solution 
are depicted in the single-point crossover and bit-wise mutation tables in Figure 
4.18. It completes one iteration/generation of GA. Now, the checking of GA-
termination criterion is performed and if it satisfies the termination criteria, stop the 
GA-iteration process, otherwise start another generation/iteration with treating the 
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six offspring solutions obtained in the previous iteration as the parent solutions and 
then assigning fitness value to all the solutions in the population and continue the 
same iteration procedure as described above.  

4.4   Genetic Fuzzy Approaches 

The performance of a FRBM depends on its knowledge base (KB) which consists of 
database (DB) (that is, information regarding membership functions) and rule base 
(RB). It is important to mention that determination of an appropriate knowledge 
base for a FRBM is not an easy task. The genetic algorithms (GAs) have been used 
by several investigators to design database and/or rule base of a FRBM. The fuzzy 
systems making use of a GA in their design process are called genetic-fuzzy systems 
(GFS). Figure 4.19 shows the schematic diagram of a genetic-fuzzy system, in 
which a GA-based learning/tuning based on example data (training data) is adopted, 
off-line to design the KB a FRBM. GA can also be used to tune the existing KB of a 
FRBM which may be designed based on the some common knowledge or expert in-
formation, to improve the performance of the existing FRBM. As the GA is found to 
be computationally expensive due to the nature of population-based optimization, 
the GA-based tuning is normally carried out off-line. 
 

 

Fig. 4.19. Schematic layout of genetic-fuzzy system 

 
A Mamdani-type fuzzy logic rule for a particular process having say, two input 

variables (x1 and x2) and one output variable (y) (each having triangular-type 
MFDs with 3 fuzzy subsets) may be expressed as 

 IF x1 is A1 AND x2 is A2 THEN y is B,  

where A1, A2 and B are the fuzzy subsets (those can be expressed by suitable lin-
guistic expression, such as LOW, MEDIUM, HIGH, etc.) of triangular-type mem-
bership function. In Section 4.2.2.2, it was discussed that in order to describe tri-
angular-type MFDS with 3 fuzzy subsets one controlling parameter is required. A 
typical binary coded GA-string for optimizing the KB will look as shown in  
Figure 4.20. 
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Fig. 4.20. A GA-string representing the rule base and the parameters related to membership 
functions of input-output variables a FRBM  

 
where b1, b2 and b3 are the (continuous) control (GA) variables related to MFDs 
corresponding to the two inputs and a single output variables x1, x2 and y, respec-
tively. The number of bits used for optimizing the RB is equal to the number of 
maximum possible rules present in the RB. In this case, the number of rules will 
be 933 =× , since each of the two input variables comprise of 3 fuzzy subsets. 
The information of b1, b2 and b3 are coded by the next bits in GA-string. 

There are, in fact, three different approaches of designing genetic-fuzzy system 
(GFS), according to the KB components including in the learning process. These 
are as follows 
 
Genetic Learning /Tuning of the Fuzzy Logic Controller Data Base 
Here, the GA is used to optimize the appropriate value(s) of the controlling para-
meter(s) that define the typical type of MFDs. In other words, for examples in case 
of triangular type MFDs, it is used to move and to expand or shrink the base 
width(s) (b1/b2/b3) of each interior isosceles triangle. The extreme triangles will be 
right triangles and the GA will make it either bigger or smaller. During GA-based 
optimization the parameters (b1, b2 and b3) are allowed to vary in a range specified 
by the designer. Thus, in this approach through evolution, the GA will find a good 
database for the FRBM but the RB will be kept as same what was initially consi-
dered by the designer. In this case, the GA-string shown in Figure 4.21 will look 
as follows: 

 

 

Fig. 4.21. A GA-string representing the parameters related to membership functions of in-
put-output variables of a FRBM  

 
Genetic Learning/Tuning of the Fuzzy Rule Base 
All methods belonging to this family assume the existence of a pre-defined DB for 
the FLC. In one method, an initial user-defined rule base (assignment of fuzzy 
subset to the output variable of each rule) constructed based on designer’s expe-
rience of the process to be controlled is tuned using GA. In GA-sting (as shown in 
Figure 4.22), each rule is represented by a single bit (1 or 0), where 1 and 0 re-
spectively indicate the presence or absence of the rule in the optimum rule base.  
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Fig. 4.22. A GA-string representing the rule base of a FRBM 

 
In the method where the RB is designed using GA automatically, additional bits 

will be included in the GA-string demonstrated in Figure 4.22 (as shown in Figure 
4.23) [10]. For the case where output variable is considered to have 2 fuzzy subsets, 
one bit will be required in order to determine the fuzzy subset to the output variable 
for each rule (e.g., 0 for LOW and 1 for MEDIUM). Two bits required for the case 
where output variable is considered to have 3/4 fuzzy subsets (e.g., 00 for LOW, 01 
for MEDIUM, 10 for HIGH and 11 for VERY HIGH), and so on. 

 

 

Fig. 4.23. A GA-string representing the rule base and automated rule development of a 
FRBM 

 
Genetic Learning/Tuning of the Fuzzy Knowledge Base 
In this approach both the RB and DB are designed/optimized using GA as stated 
above simultaneously and the corresponding GA-string will look as shown in  
Figure 4.24. 

 

 

Fig. 4.24. A GA-string representing the rule base with automated rule development and the 
parameters related to membership functions of input-output variables of a FRBM  

 
Besides the way how to construct/design the KB of FLC, selection of the ap-

propriate shape of fuzzy subsets/membership function distributions (MFDs) for 
both the input and output variables in case of Mamdani-type FLC and selection of 
shapes of fuzzy subsets of input variables as well as the appropriate structure(s) of 
rule output/consequent function(s) and determination of optimal values of coeffi-
cients and power terms of rule consequent functions are important issues. In order 
to overcome these problems, a rigorous study with different choices is required in 
order to obtain a good model for a manufacturing process. 

GA is also used in the genetic-fuzzy system where the TSK-type fuzzy logic 
rules (as defined in Section 4.2.11.2.1) are employed. Genetic Linear Regression 
(GLR) approach [11] is one of the most popular approaches in designing the KB 



GA-Fuzzy Approaches: Application to Modeling of Manufacturing Process 175
 

of TSK-type FRBM. In genetic linear regression (GLR) approach, the GA is in-
troduced partly in the multiple regression method. The GLR method will take the 
advantages of both the regression technique and GA, and have a capability to find 
global optimum and good convergence properties. In this approach, the KB of the 
FRBM is optimized using the combined method of linear regression (LR) ap-
proach and genetic algorithm. In this method the coefficients of output function of 
each rule are determined using a linear regression approach whereas the input va-
riables’ exponential parameters are simultaneously optimized using a GA. In addi-
tion to that, the MFDs also tune using a GA. In order to accomplish this, besides 
the exponential parameters of input variables, the controlling parameter(s) describ-
ing the MFDs (as discussed in Section 4.2.2.2) are considered as GA-variables. 
The working principle of GLR approach (as illustrated in Figure 4.25) consists of 
following five major steps: 

 
• Step-I: Set an initial set (population) of values of power terms of a given re-

gression function at random 
• Step-II: Evaluate the function coefficients based on least square method 
• Step-III: Checking of fitness value (if satisfied terminate the iteration proce-

dure) 
• Step-IV: Update the values of power terms of regression function using GA-

operators 
• Step-V: Repeat Step-II 

 
 

 

Fig. 4.25. Flow chart of genetic linear regression approach to construct KB of a FRBM 
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The GA-string of GLR approach will look as presented in Figure 4.26. 
 

 
Fig. 4.26. A GA-string representing the rule base, parameters related to membership func-
tions of input variables and exponential parameters of rule consequent functions of a TSK-
type FRBM   

The proposed GLR has an added facility to carryout the task of tuning MFDs of 
input variables simultaneously in the same framework of GA. 

In order to determine the coefficients of the output functions of TSK-type fuzzy 
rules, a general expression of multiple linear regression system with TSK-fuzzy 
model is derived as follows. The Equation (4.11) may be rewritten by denoting 
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Let us assume we have a set of input-output tuple (D) of S number of sample data 
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Now, the total quadratic error that is caused by the TSK-type FLC with respect to 
the given data set: 
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In order to minimize E, we have to choose the parameters, 
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where the parameter ar
j  indicates the jth coefficient of the output function of rth rule. 
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To determine the above parameters, we take the partial derivatives of E with re-

spect to each parameter and require them to be zero, i.e.,  0
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Thus, the Equation (4.16) provides the following system of linear  
equations from which we can compute the coefficients 
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In matrix form, Equation (4.18) will be written as:  
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where s is the number of training (input-output) sample data. Thus, Equation 

(4.18) provides a solution of the function coefficients ( ar
j ) of the TSK-type fuzzy 

rule consequents for a given value of the input variable’s exponential terms. To 
solve the Equation (4.18) in order to find the values of function coefficients, the 
Gauss Algorithm with Column Pivot Search Method is used here. More generally, 
any conventional numerical method, which provides a representative solution of 
Equation (4.18), may be adopted. 

4.5   Application to Modeling of Machining Process 

Numerous works on modeling of machining processes using soft computing tools 
including different GA-fuzzy approaches can be found in the review paper [12]. In 
this chapter, some of the previous research works of the author on modeling of 
manufactuing processes using GA-fuzzy approaches are presented. 

4.5.1   Modeling Power Requirement and Surface Roughness in 
Plunge Grinding Process 

In [13], a study was carried out to model power requirement and surface roughness in 
plunge grinding process using a GA-fuzzy approach. The model considers the input 
variables such as wheel speed, work speed and feed rate those mainly influence the 
power requirement and surface roughness obtained on the grind surface.  In this study 
the main objective was to find the effect of various types of MFs considered for in-
put-output variables on the performances of Mamdani-type FRBMs. The approach of 
tuned rule base and MFs simultaneously using GA was adopted. The performance of 
the models was tested (as shown in Figure 4.27) with experimental results consider-
ing 52100 steel as work material and D126K5V as grinding wheel specification. A 
digital clamp power meter is used to take the measurements of power requirement in 
grinding and the surface roughness is measured with the help of a perthometer (S6R). 
In Figure 4.27, Error 1, Error 2 and Error 3 are the percentage deviations of results 
predicted by FRBMs with triangular, 2nd order polynomial and 3rd order polynomial-
type MFDs, respectively from that obtained in experimentation. It is observed that 
higher order polynomial type MFs showed better results.  It may happen because the 
input-output relationship in grinding is highly nonlinear and the linear MFDs (trian-
gular type) may not be sufficient. 
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(a) 

 
(b) 

Fig. 4.27. Comparison of performances of FRBMs (with different types MFs) with those of 
experimental results (a) surface roughness (b) power requirement 
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In the above study, the GA was used to optimize the manually-defined KB of the 
FRBM. The manually-defined KB is designed based on the expert’s knowledge of 
the process that may not be complete. Sometimes, it becomes difficult to gather 
knowledge of the process beforehand. To overcome this difficulty, the method for au-
tomatic design of fuzzy KB is adopted to model power requirement and surface 
roughness in plunge grinding process [10]. Table 4.1 describes the comparative re-
sults of root mean square (RMS) percentage deviations exhibited by fuzzy rule-based 
models (FRBMs) from those of real experimental values. It is found that the approach 
of automatic design of RB and tuning of MFs simultaneously using GA provides bet-
ter result over the approach of tuned manually constructed RB and MFs simulta-
neously using GA. It happens because all the manually-designed fuzzy rules may not 
be good, whereas the GA has the capability of finding the good fuzzy rules through 
extensive search. Moreover, the main disadvantage of using later approach (the ap-
proach of tuned manually constructed RB and MFs) lies in the fact that the designer 
is required to have a thorough knowledge of the process to be controlled. Thus, a 
considerable amount of time is spent on manual construction of fuzzy RB. In the ap-
proach of automatic design of RB and tuning of MFs simultaneously using GA, no 
effort is made for designing the fuzzy rule-base manually and a good KB of the 
FRBM is designed automatically using a GA from a set of example (training) data. 

Table 4.1. Comparison of RMS percentage deviations exhibited by fuzzy rule-based mod-
els from those of real experimental values  

 Power requirement 

 Mathematical model FRBM based on the 
approach of  tuned 
rule base and MFs 
simultaneously  
using GA  
(approach 2) 

FRBM based on the approach of 
automatic design of rule base and 
tuning of  MFs simultaneously  
using  GA (approach 1) 

RMS percen-
tage error 

31.51 8.13 5.34 

 Surface roughness 

RMS percen-
tage error 

16.44 10.22 6.32 

4.5.2   Study of Drilling Performances with Minimum Quantity  
of Lubricant [14] 

The main objective of this study is to investigate the performances of FRBMs 
based on Mamdani-type and TSK-type of fuzzy logic rules, and different shapes 
(namely, 2nd order polynomial and trapezoidal types) of MFs for prediction and 
performance analysis of machining with minimum quantity of lubricant (MQL) in 
drilling of Aluminium (AA1050).   In this study, predictions of surface rough-
ness obtained in drilling and the corresponding cutting power and specific cutting 
force requirements for different amounts of lubricant rate will be carried out 
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through a comparative analysis of the results of models with experimental results 
as well as those published in the literature.  The approach of tuned RB and MFs 
simultaneously using GA and genetic linear regression method was adopted to 
construct the KB of Mamdani-type and TSK-type FRBM, respectively.  The struc-
ture of rule-consequent function for TSK-type fuzzy rules is used as follows 

LcFcVcy r
p

3r
p

2c
p

1
321 ++=                                                                        (4.20) 

where c1, c2 and c3 are the function coefficients and p1, p2 and p3 are the exponen-
tial parameters of rule consequent function. Vc, Fr and Lr are the input variables, 
cutting speed, feed rate and rate of lubricant, respectively. 

A helical K10 drill (R415.5-0500-30) was manufactured according to DIN6537 
by Sandvik(R). The drill has a point angle of 140º, 28 mm of flute length and is of 
10% cobalt grade. The drills possess a diameter of 5 mm and are coated with 
TiAlN. A Kistler® piezoelectric dynamometer 9272 with a load amplifier was 
used to acquire the torque and the feed force. Data acquisitions were made through 
piezoelectric dynamometer by interfacing RS-232 to load amplifier and PC using 
the appropriate software, Dynoware Kistler(R). The surface roughness was eva-
luated (Ra according to ISO 4287/1) with a Hommeltester T1000 profilometer.  

Here, 4 different models related to surface roughness and, other 4 different 
models for cutting power/specific cutting force requirement) are developed. The 
four different FRBMs are constructed using two different types of fuzzy logic 
rules (Mamdani-type and TSK-type) and two different shapes of MFs.  

The comparative results of surface roughness, cutting power and specific cut-
ting force with different lubricant flow rates for different cutting speed and feed 
rate are described in Figure 4.28, Figure 4.29 and Figure 4.30, respectively. In this 
study, nine different cases (of cutting speed and feed rate) are considered based on 
which the effects of lubricant flow rate on machining performances are analyzed. 
In these Figures, Model I indicates FRBM with Mamdani-type FLR and 2nd order 
polynomial MFs, Model II represents FRBM with Mamdani-type FLR and trape-
zoidal MFs, Model III shows FRBM with TSK-type FLR and 2nd order polynomi-
al MFs and Model IV indicates FRBM with TSK-type FLR and trapezoidal MFs. 
In the following subsections the evolutions of the prediction performances of these 
models toward the effects of surface roughness, cutting power and specific cutting 
force with lubrication rate are discussed. 
 
Surface roughness 
In Figure 4.28, the predicted values of surface roughness by FRBMs are compared 
with the experimental values for 9 cases (Figure 4.28(i) to Figure 4.28(ix)). It has 
been observed that the performance of Model II is better than Model I for first 5 
cases and case number 6. For other cases Model I outperforms over model II. But, 
the consistencies of deviations of results from that of the experimental values are 
not good for both the Model I and Model II in all the cases. In contrast, the results 
of Model III shows better than Model I and Model II for some cases (Figure 4.28 
(iv), (v) and (vii)), but for other cases that are deteriorated compared to Model I 
and Model II. On the other hand it is noticed that the results of Model IV (FRBM 
with TSK-type FLR and trapezoidal MFs) yield less error (deviation from the  
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Fig. 4.28. Comparative results of surface roughness with different lubricant flow rates for 
different cutting speed and feed rate 

experimental values) in majority than that of the other models for all (9) cases. 
Furthermore, it is noticed that the results of Model IV are also consistent for dif-
ferent values of lubrication rate. The maximum value of percentage error exhibited 
by Model IV is 2.2428, which is well accepted in industrial practice. 

By analyzing the experimental values as well as results obtained by Model IV, it 
has been observed that the surface roughness is improved by increasing the flow rate 
for lower values of cutting speed (60 m/min) and constant feed rate. But, for higher 
values of cutting speed, the surface roughness deteriorated with increasing flow rate 
(75 and 90 m/min). In contrast, for a constant cutting speed, the rate of change of 
surface quality with flow rate is minimized as feed rate increase.   
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Cutting power 
By analyzing the results of various models and experimental values as depicted in 
Figure 4.29, it has been observed that Model I as well as Model II provides poor 
results than other two models (Model III and Model IV). In contrast, it is found 
that both the models, Model III and Model IV obtain the best performance for 
predicting cutting power with the quantity of lubricant for a given cutting speed 
and feed rate. However, in cases Vc=90; f=0.15 and Vc=90; f=0.25, the Model IV 
shows better results than Model III. 
 

 
Fig. 4.29. Comparative results of cutting power with different lubricant flow rates for dif-
ferent cutting speed and feed rate  
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By analyzing the experimental values as well as results obtained by Model III and 
Model IV, it has been revealed that for a fixed value of cutting speed and feed rate, 
the cutting power increase to a certain value of lubrication flow rate. After that the 
value of cutting power decreases with increasing flow rate. From Figure 4.29, it is 
found that for constant cutting speed, the cutting power requirement increase with 
feed rate. It is also observed that the value of cutting power increases with cutting 
speed when feed rate is kept as a constant value.  

 

Specific cutting force 
As like cutting power, here also Model III and Model IV show the best result in 
predicting specific cutting force with the quantity of lubricant for a given cutting 
speed and feed rate (Figure 4.30). This is because; both the cutting power and spe-
cific force are depended on the same parameter, torque and a linear relationship is 
maintained among them. The variation of specific cutting force requirement with 
lubricant flow rate and other input parameters, cutting power and feed rate exhibit 
the same phenomena as found in cutting power. 

 

 
Fig. 4.30. Comparative results of specific cutting force with different lubricant flow rates 
for different cutting speed and feed rate  
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From above discussions, it may be pointed out that FRBMs with TSK type fuzzy 
logic rules provide best result in predicting surface roughness, cutting power and 
specific cutting force. Specifically for surface roughness, trapezoidal MFs is well 
suited, while trapezoidal as well as second order polynomial MFs give almost simi-
lar performances in predicting cutting power/specific cutting force requirements in 
drilling of Aluminium AA1050 with emulsion with oil Microtrend 231L lubricant. 
The above techniques may be adopted for developing FRBMs for other machining 
(drilling) performance parameters. Once the model is developed, it may be used on-
line in drilling machine to control the MQL as per desired outputs. 
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