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The max-sum algorithm

e Sum-product algorithm
— Takes joint distribution expressed as a factor graph
— Efficiently finds marginals over component variables
 Max-sum addresses two other tasks

1. Setting of the variables that has the highest
probability

2. Find value of that probability
* Algorithms are closely related

— Max-sum is an application of dynamic programming
to graphical models
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Finding latent variable values
having high probability

« Consider simple approach

— Use sum-product to obtain marginals p(x, ) for every
variable X;

*
— For each variable find value X; that maximizes marginal

« This would give set of values that are individually
most probable

 However we wish to find vector ™ that
maximizes joint distribution, i.e.

ma

x™ =arg_max p(x)

« With join probability px™")=max, p(x)
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Example

« Maximum of joint distribution
— Occurs atx=1, y=0
— With p(x=1,y=0)=0.4
* Marginal p(x)
— p(x=0) = p(x=0,y=0)+p(x=0,y=0)=0.6
— px=1) =pix=1y=0)+p(x=1,y=1)=0.4
* Marginal p(y)
— Py=0)=0.7
— Ph=1)=0.3
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 Marginals are maximized by x=0 and y=0 which

corresponds to 0.3 of joint distribution

 In fact, set of individually most probable values

can have probability zero in joint
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Max-sum principle

« Seek efficient algorithm for
— Finding value of x that maximizes p(x)
— Find value of joint distribution at that x

« Second task is written
max p(x) = max...max p(x)

X X
where M is total number of variables

* Make use of distributive law for max operator
— max (ab,ac) = amax (bc)
— Which holds for a =0
— Allows exchange of products with maximizations
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Chain example

Tq xTo TN TN-1

* Markov cham joint distribution has form
px)=— V’lz(x1 Xy )W 3(X, X3 ) Wy n (XX )

. Evaluatlon of probability maximum has form

max p(x) = —max MAX Y, (X, X W 3(X0,X5)- Wy v (X Xy )

7R

+ Exchanging max and prdduct operators

1
max p(x) = Emax

29

W, 2%, X, )| -

XN

-max l//N—l,N(xN—l’xN)]

— Results In
* More efficient computation

* Interpreted as messages passed from node x, to node
X7
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Generalization to tree factor graph
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Substitution factored graph expansion

Into
And
Fina
of al
Cou

px)=]]/6x)
max p(x) = max...max p(x)
exchanging maximizations with products

maximization is performed over product
messages arriving at the root node

d be called the max-product algorithm
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Use of log probabilities

* Products of probabilities can lead to numerical
underflow problems

« Convenient to work with logarithm of joint
distribution

« Has the effect of replacing products in max-
product algorithm with sums

* Thus we obtain the max-sum algorithm
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Message Passing formulation

* |In sum-product we had

From factor
node to

variable node
7

. ~N
From variable

Node to
factor node

L | o (X) = E 2 JOex,,..x,,) e o p(X,)

m&ne(f)\x

-~

g lux—>f('x) = lufl —>x(x)

lEne(x)\f
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Initial messages sent

by leaf nodes

- J
Y

ﬂxef(x) =1
Hyn(X) = J(X)

* By replacing sum with max and products with

sums of logarithms

Hyon(X) = max In f(x,x,,..x,, ) + E e - p(X,)
XM m&ne(f)\x
lux—>f(x) = ILtfl —>x(x)
IEne(x)\f

Initial messages sent

by leaf nodes
- %
Y

Hoeap()=0
fy(X)=1n f(x)
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Maximum compution

* At root node in sum-product algorithm
pPxX)= | [ 1y -i(X)

s€ne(x)

* By analogy in max-sum algorithm

p = E :“fs—>x(x)

s&ne(x)
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Finding variable configuration with
maximum value

* In evaluating p"* we will also get x#* for the most
probable value for the root node as

m

X" =argmax » u, . (%)
X sEnEe(x)
 lItis tempting to apply the above to from the root
back to leaves

— However there may be multiple configurations of x all of
which give rise to maximum value of p(x)

» Recursively repeated at every node

— So over all configuration need not be the one that
maximizes
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Modified message passing

 Different type of message passing from the root node
to the leaves

» Keeping track of which values of the variables give
rise to the maximum state of each variable

« Storing quantities given by

o(x,)=argmax[ln 1, (x,_,.x, )+ - fn_l,n(xn )]

Xn1

* Understood better by looking at lattice or trellis
diagram
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Lattice or Trellis Diagram

k=2 and k=3 each
represent possible
values of x,™

« Two paths give global
maximum
— Can be found by tracing

back along opposite
direction of arrow

Not a graphical model
Columns represent variables
Row represent states of variable

le d D

n—2 n—1 n n+1
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Backtracking in Trellis

* For each state of given variable there is a unique
state of the previous variable that maximizes

probability

— ties are broken systematically or randomly

« Equivalent to propagating a message back down
the chain using

X, =9x,)

 Know as backtracking
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Extension to general tree graphs

* Method is generalizable to tree-structured
factor graphs
 |If a message is sent from a factor node fto a

variable node x

— Maximization is performed over all other variable
nodes x,,..,xy that are neighbors of the factor node

+ Keeping track of which values of the variables
gave the maximum
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Viterbi Algorithm

 Max-sum algorithm gives exact maximizing
configuration for variables provided factor graph

IS a tree

* Important application is in finding most probable
sequence of hidden states in a HMM
— known as the Viterbi algorithm

16



Machine Learning Srihari

Max sum versus ICM

* |CM is simpler

« Max sum finds global maximum for tree
graphs

« |CM is not guaranteed to find global
maximum
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Exact inference in general graphs

« Sum-product and max-sum algorithms

— are efficient and exact solutions
 to inference problems in tree-structured graphs

* |n some cases we need to deal with graphs
with loops

* Message passing framework can be
generalized to arbitrary graph topologies

* Know as junction tree algorithm
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Junction Tree Algorithm

« Triangulation:

— Fin(c;IDchord-Iess Cycles such as ACBDA and add links such as AB
or C

« Join tree
— Nodes correspond to maximal cliques of triangulated graph 4
— Links connect pairs of cliques that have variables in common
— Done so as to give a maximal spanning tree defined as
« Weight of the tree is maximum D
* Weight is sum of weights for links
« Junction tree

— Tree is condensed so that any clique that is a subset of another
clique is absorbed

« Tow-stage message passing algorithm
— equivalent to sum-product, can be applied to junction tree
— to find marginals and conditionals
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