
Rete algorithm
The  Rete algorithm  (/ˈriːtiː/ REE-tee  or  /ˈreɪtiː/ RAY-tee,  rarely  /ˈriːt/ REET  or  /rɛˈteɪ/ re-TAY)  is  a  pattern
matching algorithm for implementing production rule systems. It is  used to determine which of  the system's

rules should fire based on its data store.
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A naive implementation of  an expert system might check each rule against known facts in a knowledge base,

firing that rule if necessary, then moving on to the next rule (and looping back to the first rule when finished).

For even moderate sized rules and facts knowledge-bases, this naive approach performs far too slowly. The Rete

algorithm provides the basis for a more efficient implementation. A Rete-based expert system builds a network of

nodes, where each node (except the root) corresponds to a pattern occurring in the left-hand-side (the condition

part) of a rule. The path from the root node to a leaf node defines a complete rule left-hand-side. Each node has a

memory of  facts  which  satisfy  that  pattern. This  structure  is  essentially  a  generalized trie.  As  new  facts  are

asserted or modified, they propagate along the network, causing nodes to be annotated when that fact matches

Contents

Overview

Rete algorithm - Wikipedia https://en.wikipedia.org/wiki/Rete_algorithm

1 z 10 6.11.2017 19:57



that pattern. When a fact or combination of facts causes all of the patterns for a given rule to be satisfied, a leaf

node is reached and the corresponding rule is triggered.

The Rete algorithm was designed by Charles L. Forgy of Carnegie Mellon University, first published in a working

paper in 1974, and later elaborated in his 1979 Ph.D. thesis and a 1982 paper (see References). Rete was first used

as the core engine of the OPS5 production system language which was used to build early systems including R1

for Digital Equipment Corporation. Rete has become the basis for many popular rule engines and expert system

shells,  including Tibco  Business  Events,Newgen  OmniRules,  CLIPS, Jess,  Drools,  IBM  Operational  Decision

Management, OPSJ, Blaze  Advisor, BizTalk Rules  Engine, Soar, Clara (https://github.com/cerner/clara-rules)

and Sparkling Logic SMARTS. The word 'Rete' is  Latin for 'net' or 'comb'. The same word is  used in modern

Italian to mean network. Charles Forgy has reportedly stated that he adopted the term 'Rete' because of its use in

anatomy to describe a network of blood vessels and nerve fibers.[1]

The Rete algorithm is designed to sacrifice memory for increased speed. In most cases, the speed increase over

naïve implementations is several orders of magnitude (because Rete performance is theoretically independent of

the number of rules in the system). In very large expert systems, however, the original Rete algorithm tends to

run into memory consumption problems. Other algorithms, both novel and Rete-based, have since been designed

which require less memory (e.g. Rete*[2] or Collection-Oriented Match[3]).

The Rete algorithm provides a generalized logical description of an implementation of functionality responsible

for  matching data  tuples  ("facts")  against  productions  ("rules")  in  a  pattern-matching  production  system  (a

category of  rule engine). A production consists  of  one or more conditions and a set of  actions which may be

undertaken for each complete set of facts that match the conditions. Conditions test fact attributes, including fact

type specifiers/identifiers. The Rete algorithm exhibits the following major characteristics:

It reduces or eliminates certain types of redundancy through the use of node sharing.

It stores partial matches when performing joins between different fact types. This, in turn, allows production
systems to avoid complete re-evaluation of all facts each time changes are made to the production system's
working memory. Instead, the production system needs only to evaluate the changes (deltas) to working
memory.

It allows for efficient removal of memory elements when facts are retracted from working memory.

The Rete algorithm is widely used to implement matching functionality within pattern-matching engines that

exploit a match-resolve-act cycle to support forward chaining and inferencing.

It provides a means for many-many matching, an important feature when many or all possible solutions in a
search network must be found.

Retes are directed acyclic graphs that represent higher-level rule sets. They are generally represented at run-time

using a network of in-memory objects. These networks match rule conditions (patterns) to facts (relational data

tuples). Rete networks act as a type of relational query processor, performing projections, selections and joins

conditionally on arbitrary numbers of data tuples.

Productions (rules) are typically captured and defined by analysts and developers using some high-level  rules

language. They are collected into rule sets which are then translated, often at run time, into an executable Rete.

When facts are "asserted" to working memory, the engine creates working memory elements  (WMEs) for each

fact. Facts are n-tuples, and may therefore contain an arbitrary number of data items. Each WME may hold an

entire n-tuple, or, alternatively, each fact may be represented by a set of  WMEs where each WME contains a

fixed-length tuple. In this case, tuples are typically triplets (3-tuples).
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Each WME enters the Rete network at a single root node. The root node passes each WME on to its child nodes,

and each WME may then be propagated through the network, possibly being stored in intermediate memories,

until it arrives at a terminal node.

The "left" (alpha)  side of  the  node graph forms a discrimination network responsible for selecting individual

WMEs based on simple conditional  tests  which match WME attributes against constant values. Nodes in the

discrimination network may also perform tests that compare two or more attributes of the same WME. If a WME

is successfully matched against the conditions represented by one node, it is passed to the next node. In most

engines, the immediate child nodes of  the root node are used to test the entity identifier or fact type of  each

WME. Hence, all the WMEs which represent the same entity type typically traverse a given branch of nodes in

the discrimination network.

Within  the  discrimination  network, each  branch  of  alpha  nodes  (also  called 1-input  nodes)  terminates  at  a

memory, called an alpha memory. These memories store collections of WMEs that match each condition in each

node in a given node branch. WMEs that fail to match at least one condition in a branch are not materialised

within  the  corresponding  alpha  memory.  Alpha  node  branches  may  fork  in  order  to  minimise  condition

redundancy.

The "right" (beta) side of the graph chiefly performs joins between different WMEs. It is optional, and is only

included if required. It consists of 2-input nodes where each node has a "left" and a "right" input. Each beta node

sends its output to a beta memory.

In descriptions of Rete, it is common to refer to token passing within the beta network. In this article, however,

we  will  describe  data  propagation  in  terms  of  WME  lists,  rather  than  tokens,  in  recognition  of  different

implementation options and the underlying purpose and use of tokens. As any one WME list passes through the

beta network, new WMEs may be added to it, and the list may be stored in beta memories. A WME list in a beta

memory represents a partial match for the conditions in a given production.

WME lists that reach the end of a branch of beta nodes represent a complete match for a single production, and

are passed to terminal nodes. These nodes are sometimes called p-nodes, where "p" stands for production. Each

terminal node represents a single production, and each WME list that arrives at a terminal node represents a

complete  set  of  matching  WMEs  for  the  conditions  in  that  production.  For  each  WME list  it  receives,  a

production node will "activate" a new production instance on the "agenda". Agendas are typically implemented as

prioritised queues.

Beta nodes typically perform joins between WME lists stored in beta memories and individual WMEs stored in

alpha memories.  Each  beta  node  is  associated with  two  input  memories.  An  alpha memory  holds  WM and

performs "right" activations on the beta node each time it stores a new WME. A beta memory holds WME lists

and performs "left" activations on the beta node each time it stores a new WME list. When a join node is right-

activated, it  compares one or more attributes of  the newly stored WME from its  input alpha memory against

given attributes of specific WMEs in each WME list contained in the input beta memory. When a join node is

left-activated it traverses a single newly stored WME list in the beta memory, retrieving specific attribute values

of given WMEs. It compares these values with attribute values of each WME in the alpha memory.

Each beta node outputs WME lists which are either stored in a beta memory or sent directly to a terminal node.

WME  lists  are  stored  in  beta  memories  whenever  the  engine  will  perform  additional  left  activations  on

Alpha network

Beta network
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subsequent beta nodes.

Logically, a beta node at the head of a branch of beta nodes is a special case because it takes no input from any

beta memory higher in the network. Different engines handle  this  issue in different ways. Some engines use

specialised adapter nodes to connect alpha memories to the left input of beta nodes. Other engines allow beta

nodes to take input directly from two alpha memories, treating one as a "left" input and the other as a "right"

input. In both cases, "head" beta nodes take their input from two alpha memories.

In order to eliminate node redundancies, any one alpha or beta memory may be used to perform activations on

multiple beta nodes. As well as join nodes, the beta network may contain additional node types, some of which

are described below. If a Rete contains no beta network, alpha nodes feed tokens, each containing a single WME,

directly to p-nodes. In this case, there may be no need to store WMEs in alpha memories.

During any one match-resolve-act cycle, the engine will find all possible matches for the facts currently asserted

to working memory. Once all the current matches have been found, and corresponding production instances have

been activated on the agenda, the engine determines an order in which the production instances may be "fired".

This is termed conflict resolution, and the list of activated production instances is termed the conflict set. The

order may be based on rule priority (salience), rule order, the time at which facts contained in each instance were

asserted to the working memory, the complexity of each production, or some other criteria. Many engines allow

rule  developers  to  select  between  different  conflict  resolution  strategies  or  to  chain  a  selection  of  multiple

strategies.

Conflict  resolution  is  not  defined as  part  of  the  Rete  algorithm, but  is  used alongside  the  algorithm. Some

specialised production systems do not perform conflict resolution.

Having performed conflict resolution, the engine now "fires" the first production instance, executing a list of

actions  associated with  the production. The actions  act  on the data represented by the production instance's

WME list.

By default, the engine will continue to fire each production instance in order until all production instances have

been fired. Each production instance will fire only once, at most, during any one match-resolve-act cycle. This

characteristic is termed refraction. However, the sequence of production instance firings may be interrupted at

any stage  by  performing changes  to  the working memory. Rule  actions  can contain instructions  to assert  or

retract WMEs from the working memory of the engine. Each time any single production instance performs one

or more such changes, the engine immediately enters a new match-resolve-act cycle. This includes "updates" to

WMEs currently in the working memory. Updates are represented by retracting and then re-asserting the WME.

The  engine  undertakes  matching  of  the  changed data  which,  in  turn,  may  result  in  changes  to  the  list  of

production instances on the agenda. Hence, after the actions for any one specific production instance have been

executed, previously activated instances  may have been de-activated and removed from the agenda, and new

instances may have been activated.

As  part  of  the  new match-resolve-act  cycle, the  engine  performs  conflict  resolution  on the  agenda and then

executes the current first instance. The engine continues to fire production instances, and to enter new match-

resolve-act  cycles, until  no further production instances  exist  on the agenda. At this  point the  rule  engine is

deemed to have completed its work, and halts.

Conflict resolution

Production execution
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Some  engines  support  advanced  refraction  strategies  in  which  certain  production  instances  executed  in  a

previous cycle are not re-executed in the new cycle, even though they may still exist on the agenda.

It is possible for the engine to enter into never-ending loops in which the agenda never reaches the empty state.

For this reason, most engines support explicit "halt" verbs that can be invoked from production action lists. They

may also provide automatic loop detection in which never-ending loops are automatically halted after a given

number of iterations. Some engines support a model in which, instead of halting when the agenda is empty, the

engine enters a wait state until new facts are asserted externally.

As for conflict resolution, the  firing of  activated production instances is  not a feature  of  the  Rete  algorithm.

However, it is a central feature of engines that use Rete networks. Some of  the optimisations offered by Rete

networks are only useful in scenarios where the engine performs multiple match-resolve-act cycles.

Conditional tests  are most commonly used to perform selections and joins on individual tuples. However, by

implementing additional beta node types, it is possible for Rete networks to perform quantifications. Existential

quantification  involves  testing for the  existence  of  at  least  one  set  of  matching WMEs in  working memory.

Universal quantification involves testing that an entire set of WMEs in working memory meets a given condition.

A variation of  universal quantification might test that a given number of  WMEs, drawn from a set of  WMEs,

meets given criteria. This might be in terms of  testing for either an exact number or a minimum number of

matches.

Quantification is  not  universally  implemented in Rete  engines, and, where  it  is  supported, several  variations

exist. A variant of existential quantification referred to as negation is widely, though not universally, supported,

and is  described in seminal  documents. Existentially  negated conditions  and conjunctions  involve  the use  of

specialised beta nodes that test for non-existence of matching WMEs or sets of WMEs. These nodes propagate

WME lists only when no match is found. The exact implementation of negation varies. In one approach, the node

maintains a simple count on each WME list it receives from its left input. The count specifies the number of

matches found with WMEs received from the right input. The node only propagates WME lists whose count is

zero. In another approach, the node maintains an additional memory on each WME list received from the left

input. These memories are a form of beta memory, and store WME lists for each match with WMEs received on

the right input. If a WME list does not have any WME lists in its memory, it is propagated down the network. In

this approach, negation nodes generally activate further beta nodes directly, rather than storing their output in an

additional beta memory. Negation nodes provide a form of 'negation as failure'.

When changes are made to working memory, a WME list that previously matched no WMEs may now match

newly asserted WMEs. In this case, the propagated WME list and all its extended copies need to be retracted from

beta memories further down the network. The second approach described above is often used to support efficient

mechanisms for removal of WME lists. When WME lists are removed, any corresponding production instances

are de-activated and removed from the agenda.

Existential quantification can be performed by combining two negation beta nodes. This represents the semantics

of  double  negation (e.g., "If  NOT NOT any matching WMEs, then..."). This  is  a  common approach  taken by

several production systems.

The Rete algorithm does not mandate any specific approach to indexing the working memory. However, most

modern  production  systems  provide  indexing mechanisms. In  some  cases,  only  beta  memories  are  indexed,

Existential and universal quantifications

Memory indexing
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whilst in others, indexing is used for both alpha and beta memories. A good indexing strategy is a major factor in

deciding the overall performance of a production system, especially when executing rule sets that result in highly

combinatorial  pattern matching (i.e., intensive  use of  beta join nodes), or, for some engines, when executing

rules  sets  that  perform  a  significant  number  of  WME retractions  during  multiple  match-resolve-act  cycles.

Memories  are  often  implemented using combinations  of  hash  tables,  and hash  values  are  used to  perform

conditional joins on subsets of WME lists and WMEs, rather than on the entire contents of memories. This, in

turn, often significantly reduces the number of evaluations performed by the Rete network.

When a WME is retracted from working memory, it must be removed from every alpha memory in which it is

stored. In  addition, WME lists  that  contain  the  WME must  be  removed from beta memories, and activated

production  instances  for  these  WME  lists  must  be  de-activated  and  removed  from  the  agenda.  Several

implementation variations exist, including tree-based and rematch-based removal. Memory indexing may be used

in some cases to optimise removal.

When defining productions in a rule set, it is common to allow conditions to be grouped using an OR connective.

In  many  production  systems,  this  is  handled by  interpreting a  single  production  containing multiple  ORed

patterns as the equivalent of multiple productions. The resulting Rete network contains sets of terminal nodes

which, together, represent single productions. This approach disallows any form of short-circuiting of the ORed

conditions. It can also, in some cases, lead to duplicate production instances being activated on the agenda where

the same set  of  WMEs match  multiple  internal  productions. Some engines  provide agenda de-duplication in

order to handle this issue.

The following diagram illustrates the basic Rete topography, and shows the associations between different node

types and memories.

Most implementations use type nodes to perform the first level of selection on n-tuple working memory
elements. Type nodes can be considered as specialized select nodes. They discriminate between different
tuple relation types.

The diagram does not illustrate the use of specialized nodes types such as negated conjunction nodes. Some
engines implement several different node specialisations in order to extend functionality and maximise
optimisation.

The diagram provides a logical view of the Rete. Implementations may differ in physical detail. In particular, the
diagram shows dummy inputs providing right activations at the head of beta node branches. Engines may
implement other approaches, such as adapters that allow alpha memories to perform right activations directly.

The diagram does not illustrate all node-sharing possibilities.

For a more detailed and complete description of the Rete algorithm, see chapter 2 of Production Matching for

Large Learning Systems by Robert Doorenbos (see link below).

A  possible  variation  is  to  introduce  additional  memories  for  each  intermediate  node  in  the  discrimination

Removal of WMEs and WME lists

Handling ORed conditions

Diagram

Alternatives

Alpha Network
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network. This increases

the  overhead  of  the

Rete,  but  may  have

advantages  in

situations  where  rules

are  dynamically  added

to or removed from the

Rete,  making  it  easier

to vary the topology of

the  discrimination

network dynamically.

An alternative implementation is described by Doorenbos.[4] In this case, the discrimination network is replaced

by a set of  memories  and an index. The index may be implemented using a hash table. Each  memory holds

WMEs that match a single conditional pattern, and the index is used to reference memories by their pattern. This

approach is only practical when WMEs represent fixed-length tuples, and the length of each tuple is short (e.g.,

3-tuples).  In  addition,  the  approach  only  applies  to  conditional  patterns  that  perform  equality  tests  against

constant values. When a WME enters the Rete, the index is used to locate a set of memories whose conditional

pattern matches the WME attributes, and the WME is then added directly to each of these memories. In itself,

this implementation contains no 1-input nodes. However, in order to implement non-equality tests, the Rete may

contain additional 1-input node networks through which WMEs are passed before being placed in a memory.

Alternatively, non-equality tests may be performed in the beta network described below.

A common variation is to build linked lists of tokens where each token holds a single WME. In this case, lists of

WMEs for a partial match are represented by the linked list of tokens. This approach may be better because it

eliminates the need to copy lists of WMEs from one token to another. Instead, a beta node needs only to create a

new token to hold a WME it wishes to join to the partial match list, and then link the new token to a parent token

stored in the input beta memory. The new token now forms the head of the token list, and is stored in the output

beta memory.

Beta nodes process tokens. A token is a unit of storage within a memory and also a unit of exchange between

memories and nodes. In many implementations, tokens are introduced within alpha memories where they are

used to hold single WMEs. These tokens are then passed to the beta network.

Each beta node performs its work and, as a result, may create new tokens to hold a list of WMEs representing a

partial match. These extended tokens are then stored in beta memories, and passed to subsequent beta nodes. In

this case, the beta nodes typically pass lists of WMEs through the beta network by copying existing WME lists

from each received token into new tokens and then adding a further WMEs to the lists as a result of performing a

join or some other action. The new tokens are then stored in the output memory.

Illustrates the basic Rete.

Beta Network
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Although not defined by  the Rete  algorithm, some engines  provide extended functionality to support  greater

control of truth maintenance. For example, when a match is found for one production, this may result in the

assertion of new WMEs which, in turn, match the conditions for another production. If a subsequent change to

working memory causes the first match to become invalid, it may be that this implies that the second match is

also  invalid.  The  Rete  algorithm  does  not  define  any  mechanism  to  define  and handle  these  logical  truth

dependencies  automatically.  Some  engines,  however,  support  additional  functionality  in  which  truth

dependencies  can  be  automatically  maintained.  In  this  case,  the  retraction  of  one  WME may  lead  to  the

automatic retraction of additional WMEs in order to maintain logical truth assertions.

The Rete algorithm does not define any approach to justification. Justification refers to mechanisms commonly

required in expert and decision systems in which, at its simplest, the system reports each of the inner decisions

used to reach some final conclusion. For example, an expert system might justify a conclusion that an animal is

an elephant by reporting that it  is  large, grey, has big ears, a trunk and tusks. Some engines provide built-in

justification systems in conjunction with their implementation of the Rete algorithm.

This  article  does  not  provide  an  exhaustive  description  of  every  possible  variation  or extension  of  the  Rete

algorithm. Other considerations  and innovations  exist. For example, engines may provide specialised support

within the Rete network in order to apply pattern-matching rule processing to specific data types and sources

such  as  programmatic  objects,  XML  data  or  relational  data  tables.  Another  example  concerns  additional

time-stamping facilities provided by many engines for each WME entering a Rete network, and the use of these

time-stamps in conjunction with conflict resolution strategies. Engines exhibit significant variation in the way

they allow programmatic access to the engine and its working memory, and may extend the basic Rete model to

support forms of parallel and distributed processing.

Several  optimizations  for  Rete  have  been  identified  and described in  academic  literature.  Several  of  these,

however, apply only in very specific scenarios, and therefore  often have little  or no application in a general-

purpose rules engine. In addition, alternative algorithms such as TREAT, developed by Daniel P. Miranker[5] and

LEAPS have been formulated which may provide additional performance improvements. There are currently very

few commercial or open source examples of productions systems that support these alternative algorithms.

The Rete algorithm is suited to scenarios where forward chaining and "inferencing" is used to calculate new facts

from existing facts, or to filter and discard facts in order to arrive at some conclusion. It is also exploited as a

reasonably efficient mechanism for performing highly combinatorial evaluations of facts where large numbers of

joins must be performed between fact tuples. Other approaches to performing rule evaluation, such as the use of

decision trees, or the implementation of sequential engines, may be more appropriate for simple scenarios, and

should be considered as possible alternatives.

Performance of Rete is also largely a matter of implementation choices (independent of the network topology),

one of which (the use of hash tables) leads to major improvements. Most of the performance benchmarks and

comparisons available on the web are biased in some way or another. To mention only a frequent bias and an

unfair type of comparison: 1) the use of toy problems such as the Manners and Waltz examples; such examples

are useful to estimate specific properties of the implementation, but they may not reflect real performance on

complex applications; 2)  the  use  of  an old implementation; for instance, the  references  in the following two

sections (Rete II and Rete-NT) compare some commercial products to totally outdated versions of  CLIPS and

they claim that the commercial products may be orders of magnitude faster than CLIPS; this is forgetting that

Miscellaneous considerations

Optimization and performance
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CLIPS 6.30 (with the introduction of hash tables as in Rete II) is orders of  magnitude faster than the version

used for the comparisons (CLIPS 6.04).

In the 1980s, Charles Forgy developed a successor to the Rete algorithm named Rete II.[6] Unlike the original

Rete  (which  is  public domain)  this  algorithm was  not  disclosed. Rete  II  claims better performance for more

complex  problems  (even  orders  of  magnitude[7]),  and  is  officially  implemented  in  CLIPS/R2,  a  C/++

implementation and in OPSJ, a Java implementation in 1998. Rete II gives about a 100 to 1 order of magnitude

performance  improvement  in  more  complex  problems  as  shown by  KnowledgeBased Systems  Corporation[8]

benchmarks.

Rete  II  can  be  characterized  by  two  areas  of  improvement;  specific  optimizations  relating  to  the  general

performance of the Rete network (including the use of hashed memories in order to increase performance with

larger sets  of  data),  and the  inclusion  of  a  backward chaining algorithm  tailored to  run  on  top of  the  Rete

network. Backward chaining alone can account for the most extreme changes in benchmarks relating to Rete vs.

Rete II. Rete II is implemented in the commercial product Advisor from FICO, formerly called Fair Isaac [9]

Jess (at least versions 5.0 and later) also adds a commercial  backward chaining algorithm on top of  the Rete

network, but it  cannot be said to fully implement Rete  II, in part due to the fact that no full  specification is

publicly available.

In the early 2000s, the Rete III engine was developed by Charles Forgy in cooperation with FICO engineers. The

Rete III algorithm, which is not Rete-NT, is the FICO trademark for Rete II and is implemented as part of the

FICO Advisor engine. It  is  basically  the  Rete  II  engine with an API that  allows access to the Advisor engine

because the Advisor engine can access other FICO products.[10]

In 2010, Forgy developed a new generation of the Rete algorithm. In an InfoWorld benchmark, the algorithm was

deemed 500 times faster than the original Rete algorithm and 10 times faster than its predecessor, Rete II.[11]

This  algorithm is  now licensed to Sparkling Logic, the  company that Charles joined as investor and strategic

advisor,[12][13] as the inference engine of the SMARTS product.

Action selection mechanism

Inference engine

"Rete Algorithm Demystified! – Part 1" (http://www.sparklinglogic.com/rete-algorithm-demystified-part-1/) by
Carole-Ann Matignon

1. 

Variants

Rete II

Rete-III

Rete-NT

See also

References

Rete algorithm - Wikipedia https://en.wikipedia.org/wiki/Rete_algorithm

9 z 10 6.11.2017 19:57



The Execution Kernel of RC++: RETE* A Faster Rete with TREAT as a Special Case, http://www.cs.bris.ac.uk
/Publications/Papers/2000091.pdf, by Ian Wright, James Marshall. Retrieved 2013-09-13.

2. 

Collection Oriented Match, http://teamcore.usc.edu/papers/1993/cikm-final.pdf, by Anurag Acharya and Milind
Tambe, Carnegie Mellon University. Retrieved 2013-09-13.

3. 

Production Matching for Large Learning Systems (http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-
95-113.pdf) from SCS Technical Report Collection, School of Computer Science, Carnegie Mellon University

4. 

http://dl.acm.org/citation.cfm?id=39946 "TREAT: a new and efficient match algorithm for AI production systems
"

5. 

RETE2 (http://www.pst.com/reteII.html) from Production Systems Technologies6. 

Benchmarking CLIPS/R2 (http://www.pst.com/clipsr2_benchmark.html) from Production Systems Technologies7. 

KBSC (http://www.kbsc.com)8. 

http://dmblog.fico.com/2005/09/what_is_rete_ii.html9. 

http://dmblog.fico.com/2005/09/what_is_rete_ii.html10. 

Owen, James (2010-09-20). "World's fastest rules engine | Business rule management systems"
(http://www.infoworld.com/t/business-rule-management-systems/worlds-fastest-rules-engine-822). InfoWorld.
Retrieved 2012-04-07.

11. 

"It's Official, Dr. Charles Forgy Joins Sparkling Logic as Strategic Advisor" (http://www.pr.com/press-release
/365279). PR.com. 2011-10-31. Retrieved 2012-04-07.

12. 

"Dr. Charles Forgy, PhD" (http://www.sparklinglogic.com/advisors/). www.sparklinglogic.com. Retrieved
2012-04-07.

13. 

Charles Forgy, "A network match routine for production systems." Working Paper, 1974.

Charles Forgy, ""On the efficient implementation of production systems." (http://reports-
archive.adm.cs.cmu.edu/anon/scan/CMU-CS-79-forgy.pdf) Ph.D. Thesis, Carnegie-Mellon University, 1979.

Charles, Forgy (1982). "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem".
Artificial Intelligence. 19: 17–37. doi:10.1016/0004-3702(82)90020-0 (https://doi.org
/10.1016%2F0004-3702%2882%2990020-0).

Rete Algorithm explained (http://drdobbs.com/184405218) Bruce Schneier, Dr. Dobb's Journal

Production Matching for Large Learning Systems – R Doorenbos (http://reports-archive.adm.cs.cmu.edu
/anon/1995/CMU-CS-95-113.pdf) Detailed and accessible description of Rete, also describes a variant named
Rete/UL, optimised for large systems (PDF)

According to the Rules (http://www.cut-the-knot.org/classes/Last.shtml) (A short introduction from cut-the-knot)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Rete_algorithm&oldid=801343206"

This page was last edited on 19 September 2017, at 03:15.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

External links

Rete algorithm - Wikipedia https://en.wikipedia.org/wiki/Rete_algorithm

10 z 10 6.11.2017 19:57


