1.4. Rete Algorithr http://www.jbug.jp/trans/jboss-rules3.0.2/ja/htrhidd s04.htn

1z5

1.4. Rete Algorithm
Prev Chapter 1. The Rule Engine Next

1.4. Rete Algorithm

The RETE algorithm was invented by Dr. Charles Forgy and documented in his PhD thesis in 1978-79. A
simplified version of the paper was published in 198&(//citeseer.ist.psu.edu/context/50508.71he

word RETE is latin for "net" meaning network. The RETE algorithm can be broken into 2rplerts
compilation and runtime execution.

The compilation algorithm describes how the Rules in the Production Memory to ge mee#fteient
descrimination network. In non-technical terms, a descrimination network is usédrtddtia. The idea is

to filter data as it propogates through the network. At the top of the network the nodes wouldiave ma
matches and as we go down the network, there would be fewer matches. At the very bottom of the
network are the terminal nodes. In Dr. Forgy's 1982 paper, he described 4 basic nodes: root, 1-input,
2-input and terminal.

ObjectTypeNode ReteMode

AlphaNode JoinNode

LeftinputAdapterMode

D o
EvalNode

000

TerminalMode

Figure 1.5. Rete Nodes

The root node is where all objects enter the network. From there, it immediatelyp tjoes t
ObjectTypeNode. The purpose of the ObjectTypeNode is to make sure the engine doesn't do more work
than it needs to. For example, say we have 2 objects: Account and Order. If the rule edgioe trie
evaluate every single node against every object, it would waste a lot of cycles. Tdimgdkefficient,

the engine should only pass the object to the nodes that match the object type. The easiest Wigy to do t
is to create an ObjectTypeNode and have all 1-input and 2-input nodes descend from it. Thsnway, if
application asserts a new account, it won't propogate to the nodes for the Order objedlsiwBzn an
object is asserted it retrieves a list of valid ObjectTypesNodes via a lookup sh&l&fafrom the object's
Class; if this list doesn't exist it scans all the ObjectTypde nodes finding \atlithe@s which it caches in

the list. This enables Drools to match against any Class type that matchesiwitharmreof check.

6.11.2017 20:4

1.4. Rete Algorithr http://www.jbug.jp/trans/jboss-rules3.0.2/ja/htrhidd s04.htn

225

ReteMode

)

Cheese __— 1 Person

.

Figure 1.6. ObjectTypeNodes

ObjectTypdeNodes can propagate to AlphaNodes, LeftinputAdapterNodes and BetaNodesoddghaN
are used to evaluate literal conditions. Although the 1982 paper only covers equality conditions, many
RETE implementations support other operations. For example, Account.name == "Mr Jiiteral
condition. When a rule has multiple literal conditions for a single object type, theykae fbgether.

This means that if an application asserts an account object, it must fifgttbetiBrst literal condition

before it can proceed to the next AlphaNode. In Dr. Forgy's paper, he refers to thesé& ksriatra
conditions. The following shows the AlphaNode combinations for Cheese(name == "cheddgth str

== "strong"):

Cheese

name == “cheddar"

@

strength == "strong”

.q

Figure 1.7. AlphaNodes

Drools extends Rete by optimising the propagation from ObjectTypdeNode to AlphaNode using. hashi
Each time an AlphaNode is added to an ObjectTypdeNode it adds the literal value as a key to the
HashMap with the AlphaNode as the value. When a new instance enters the ObjectTypdehswde, rat
than propagating to each AlphaNode, it can instead retrieve the correct AlphaNodeefidashMap -
avoiding unecessary literal checks.

There are two two-input nodes; JoinNode and NotNode - both are types of BetaNodes. BetaNaskes ar
to compare 2 objects, and their fields, to each other. The objects may be the same i tgiiiese By
convention we refer to the two inputs as left and right. The left input for a BetaNodeialyea list of
objects; in Drools this is a Tuple. The right input is a single object. Two Nots can be irsptement

‘exists' checks. BetaNodes also have memory. The left input is called the Betay\ed remembers all
incoming tuples. The right input is called the Alpha Memory and remembers all inconeagsobjrools

6.11.2017 20:4

1.4. Rete Algorithr http://www.jbug.jp/trans/jboss-rules3.0.2/ja/htrhidd s04.htn

extends Rete by performaning indexing on the BetaNodes. For instance, if we know thatal8etaN
peforming a check on a String field, as each object enters we can do a hash lookup on thalustring va
This means when facts enter from the opposite side, instead of iterating ovefadtshe find valid

joins, we do a lookup returning potentially valid candidates. At any point a valid join is found the Tuple is
joined with the Object; which is referred to as a partial match; and then propagttedéext node.

Cheese Person

name == "cheddar"

4

Person_favouriteCheese ==
Cheese.name

Figure 1.8. JoinNode

To enable the first Object, in the above case Cheese, to enter the network we use a
LeftinputNodeAdapter - this takes an Object as an input and propagates a singld Qigct

Terminal nodes are used to indicate a single rule has matched all its condititins paint we say the
rule has a full match. A rule with an 'or' conditional disjunctive connective resultbrinles generation

for each possible logically branch; thus one rule can have multiple terminal nodes.

Drools also performs node sharing. Many rules repeat the same patterns, node shasng a6
collapse those patterns so that they don't have to be re-evaluated for every single. inb&afalowing

two rules share the first same pattern, but not the last:

rul e
when
Cheese($chedddar : nane == "cheddar")
$person : Person(favouriteCheese == $cheddar)
t hen
Systemout.println($person.getNanme() + " |ikes cheddar");
end
rul e
when

Cheese($chedddar : nane == "cheddar")

3z5 6.11.2017 20:4

http://www.jbug.jp/trans/jboss-rules3.0.2/ja/htrhidd s04.htn

1.4. Rete Algorithr

Person(favouriteCheese ! = $cheddar)

$person :
i ke cheddar");

t hen
Systemout. println($person.getNarme() + " does not

end

As you can see below, the compiled Rete network shows the alpha node is shared, but the beta nodes a
not. Each beta node has its own TerminalNode. Had the second pattern been the same it wostd have al

been shared.
Person

. name == "cheddar"
f
|
|

Person. favouriteCheese == |
Cheese name
|

/
System.oul printin(person.getName() + " likes cheddar") ,."
\)

¥

LY I

) !
/
s
ks
o
-

FPerson favouriteCheese 1=
Cheasa.namea

-
System.out.printing person.getMame() + " does not like

cheddar")

Figure 1.9. Node Sharing

6.11.2017 20:4

425

1.4. Rete Algorithr http://www.jbug.jp/trans/jboss-rules3.0.2/ja/htrhidd s04.htn

Prev Up Next
|

1. 3. Knowledge Representation Home | ToC 1.5. Leaps Algorithm

525 6.11.2017 20:4

