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Abstract

Data mining is the search for relationships and global patterns that exist in large databases.
One of the main problems for data mining is that the number of possible relationships is very
large, thus prohibiting the search for the correct ones by validating each of them. Hence we
need intelligent data mine tools, as taken from the domain of machine learning.

In this paper we present a new inductive machine learning algorithm called ILA. The system
generates rules in canonical form from a set of examples. We also describe application of
ILA to a range of data sets with different number of attributes and classes. The results
obtained show that ILA is more general and robust than most other algorithms for inductive
learning. Most of the time,  the worst case of ILA appears to be comparable to the best case
of some well-known algorithms such as AQ and ID3, if not better.

Keywords: Machine Learning, Induction, Knowledge Discovery, Inductive Learning, Symbolic
Learning Algorithm.

1. Introduction

Using data mining or knowledge discovery techniques, automated tools can be
designed for learning rules from databases. In the recent past, the application of data
mining[Frawley, Piatetsky-Shapiro, and Matheus, 1991] has acquired considerable
significance. Researchers have developed and applied machine learning techniques to
automatically acquire knowledge from large databases and to learn rules for expert
systems. The domains of data mining and machine learning intersect as they both deal
with extracting interesting and previously unknown knowledge from
databases[Deogun et al., 1997]. [Holsheimer and Siebes, 1994] state that, in fact,
when a database is used as a training set, the learning process is called data mining.
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One of the approaches to inductive machine learning that is often used is to form a
decision tree from a set of training examples. Decision tree-based approaches to
classification learning are typically preferred because they are eff icient and, thus, can
deal with a large number of training examples.  However, the decision tree approaches
do not always produce the most general production rules. Therefore, there are many
algorithms which do not employ decision trees, for instance, AQ family of algorithms
that utili ze disjunction of features values covering positive examples[Michalski,
1983]. Furthermore several others use multiple learning algorithms within a single
learning system as in FCLS system which combines rules with specific examples in a
best-match framework[Zhang, 1990].

So far the best known algorithm which takes a set of examples as input and produces
a decision tree which is consistent with examples has been Quinlan’s ID3
algorithm[Quinlan, 1983]. This was derived from the Concept Learning System(CLS)
algorithm described by [Hunt, Maria & Stone, 1966]. ID3 has two new features that
improved the algorithm. First an information-theoretic splitti ng heuristic was used to
enable small and eff icient decision trees to be constructed. Second, the incorporation
of windowing process that enabled the algorithm to cope with large training
sets[Thornton, 1992]. With these advantages ID3 has become a mainstream of
symbolic learning approaches and a number of derivatives are proposed by many
researchers. For example, ID4 which incrementally builds a decision tree based on
individually observed instances by maintaining positive and negative instance counts
of every attribute that could be a test attribute[Schlimmer and Fisher, 1986],
ASSISTANT 86 which handles induction bias caused by mutual information-theoretic
measure that filters out irrelevant features [Cestnik, Kononenko, and Bratko, 1987],
ID5 which provides an incremental method for building ID3 type decision trees but
differs from ID4 in its method for replacing the test attribute  [Utgoff , 1988], GID3
and GID3* which does not branch on each value of the chosen attribute to reduce the
unnecessary sub-division of data  [Irani, Cheng, Fayyad, and Qian, 1993], and C4.5
which handles uncertain data [Quinlan, 1993] with the expense of increasing
classification error rate.

ID3 is a top-down, nonbacktracking decision tree algorithm. One of the problems with
ID3 is that the decision tree produced overfits the training examples because it
performs a stepwise splitti ng that attempts to optimize at each individual split , rather
than on an overall basis [McKee, 1995]. This leads to decision trees that are too
specific because they used unnecessary or irrelevant conditions. Hence this affects the
abilit y to classify unknown examples or examples with incomplete attributes.
Typically, to overcome overfit in decision trees, the tree is pruned [Breiman et al.,
1984]. Though this method may not work adequately for an inconclusive data set
which require probabili stic rather than categorical classification.  [Uthurusamy et al.,
1991] proposed an algorithm which improves on ID3 to make it applicable to
inconclusive data sets.   Another problem with ID3 relates to the fact that for
applications involving a large number of training examples which cannot be kept in
computer’s main memory at once. The algorithm can work with a “representative”
sample from the training set, called windowing, which however, cannot guarantee to
yield the same decision tree as would be obtained from the complete set of training
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examples. In this case the decision tree would be unable to classify all examples
correctly [Carter and Catlett, 1987].

AQ is another well -known inductive learning algorithm. The original AQ does not
handle uncertainty very well . Existing implementations, such as AQ11[Michalski and
Larson, 1978], AQ15[Michalski et al., 1986] handle noise with pre and post-
processing techniques. The basic AQ algorithm however, heavily depends on specific
training examples during search(the algorithm actually employs a beam search). The
AQ algorithm when generating a conjunction of attribute value conditions (called a
complex), also performs a general-to-specific search for the best complex. The
algorithm only considers specializations that exclude some particular covered
negative example from the complex while ensuring some particular ‘seed’ positive
example remains covered, iterating until all negative examples are excluded. As a
result , AQ searches only the space of complexes that are completely consistent with
the data.

CN2 algorithm[Clark and Niblett, 1989], which is an adaptation of the AQ algorithm,
retains the same heuristic search method of the AQ algorithm but on the other hand,
removes its dependence on specific examples during search and also extends AQ’s
search space to include rules that do not perform perfectly on the training data. Both
AQ and CN2 are rule induction systems that are regarded as non decision tree
approaches.

Other algorithms include OC1[Murthy, Kasif, and Salzberg, 1994] which is a system
for induction of oblique decision trees suitable for domains where attributes have
numeric values,  and RULES[Pham and Aksoy, 1995] which is a rule induction
algorithm with an abilit y to classify unseen examples. The disadvantage of RULES
lies in the increased number of rules generated to handle such data.

We present a production rule induction system called ILA(Inductive Learning
Algorithm) which produces IF-THEN rules directly from a set of training examples in
a general-to-specific way (i.e. starting off with the most general rule possible and
producing specific rules whenever it is deemed necessary). ILA eliminates all
unnecessary and irrelevant conditions from the extracted rules and therefore its rules
are more simple and general than those obtained from ID3 and AQ. ILA also produces
rules fewer in number than ID3 and AQ most of the time. The generality of rules
increases the classification capabilit y of ILA. A rule becomes more general as the
number of conditions on its IF-part becomes fewer. A general rule also help in
classifying incomplete examples in which one or more attributes may be unknown.
They also embody the general patterns within the database. The rules can be used to
interpret and understand the active mechanisms underlying the database.

We describe the application of ILA to a range of problems demonstrating the
performance of the algorithm on three domains from UCI repository1. The results of
ILA are compared to those of  ID3 and AQ.

                                                          
1University of California Irvine Repository of Machine Learning Databases and Domain Theories via
anonymous ftp to charlotte.ics.uci.edu : pub/machine-learning-databases.
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2.  The Inductive Learning Algorithm(ILA)

Now that we have reviewed ID3 and AQ we can turn to ILA, a new inductive
algorithm for generating a set of classification rules for a collection of training
examples. The algorithm works in an iterative fashion, each iteration searching for a
rule that covers a large number of training examples of a single class. Having found a
rule, ILA removes those examples it covers from the training set by marking them and
appends a rule at the end of its rule set. In other words our algorithm works on a rules-
per-class basis. For each class, rules are induced to separate examples in that class
from examples in all the remaining classes. This produces an ordered list of rules
rather than a decision tree. The advantages of the algorithm can be stated as follows:

• The rules are in a suitable form for data exploration; namely a description of each
class in the simplest way that enables it to be distinguished from the other classes.

• The rule set is ordered in a more modular fashion which enables to focus on a
single rule at a time. Decision trees are hard to interpret, particularly when the
number of nodes is large.

Feature space selection in ILA is stepwise forward.  ILA also prunes any unnecessary
conditions from the rules.

ILA is quite unlike ID3 or AQ in many respects. The major difference is that ILA does
not employ an information theoretic approach and concentrates on finding only
relevant values of attributes, while ID3 is concerned with finding the attribute which
is most relevant overall, even though some values of that attribute may be irrelevant.
Also ID3 divides a training set into homogeneous subsets without reference to the
class of the subset, ILA must identify each specific class.

ILA to be described in section 2.2 starts processing the training data by dividing the
example set into sub-tables for each different class attribute value. Afterwards it
makes comparisons between values of an attribute among all sub-tables and counts
their number of occurrences. ILA is designed for handling discrete and symbolic
attribute values in an attempt to overcome the attribute selection problem.
Continuous-valued attributes can be discretized during decision tree or rule generation
by partitioning their ranges using cut points[Fayyad and Irani, 1994]. But most of the
time the motivation for discretization is to improve the learning speed of the
algorithm when continuous(numeric) attributes are encountered[Ching, Wong and
Chan, 1995].

Starting off with the maximum number of occurrence combinations it then
immediately begins generating rules until it marks all rows of a sub-table classified.
ILA then repeats this process for all values of each attribute of each sub-table. Finally,
all possible IF-THEN rules are derived when there are no unmarked rows left for
processing.
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2.1  General Requirements

1. The examples are to be listed in a table where each row corresponds to an example
and each column contains attribute values.

2. A set of m training examples, each example composed of k attributes and a class
attribute with n possible decisions.

3. A rule set, R, with an initial value of φ.
4. All rows in the table are initially unmarked.

2.2  The Inductive Learning Algorithm(ILA)

Step1: Partition the table which contains m examples into n sub-tables. One table for
each possible value of the class attribute.

(* steps 2 through 8 are repeated for each sub-table *)

Step2: Initialize attribute combination count j as j = 1.

Step3: For the sub-table under consideration, divide the attribute list into distinct
combinations, each combination with  j distinct attributes.

Step4: For each combination of attributes, count the number of occurrences of
attribute values that appear under the same combination of attributes in unmarked
rows of the sub-table under consideration but at the same time that should not appear
under the same combination of attributes of other sub-tables. Call the first
combination with the maximum number of occurrences as max-combination.

Step5: If max-combination = φ,  increase j by 1 and go to Step 3.

Step6: Mark all rows of the sub-table under consideration, in which the values of
max-combination appear, as classified.

Step7: Add a rule to R whose left hand side comprise attribute names of max-
combination with their values separated by AND operator(s) and its right hand side
contains the decision attribute value associated with the sub-table.

Step8: If all rows are marked as classified, then move on to process another sub-table
and go to Step 2. Otherwise(i.e., if there are still unmarked rows) go to Step 4. If no
sub-tables are available, exit with the set of rules obtained so far.

3. A Description of the Inductive Learning Algorithm
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ILA is a rather simple algorithm for extracting production rules from a collection of
examples. An example is described in terms of a fixed set of attributes, each with its
own set of possible values. In describing ILA we shall make use of three different
training example sets(i.e. object, weather and season classifications).

As an ill ustration of the operation of ILA, let us consider the training set for object
classification given in Table 1, consisting of seven examples (i.e. m=7) with three
attributes (k=3) and one decision(class) attribute with two possible values, {yes, no},
(n=2). In this example, “Size”, “Color” and “Shape”  are attributes with sets of
possible values { small , medium, large}, { red, blue, green}, and {brick, wedge, sphere,
pill ar} respectively.

 TABLE 1. Object Classification Training Set[Thornton, 1992].
Example no. Size Color Shape Decision

1 medium blue brick yes
2 small red wedge no
3 small red sphere yes
4 large red wedge no
5 large green pill ar yes
6 large red pill ar no
7 large green sphere yes

Since n is two, the first step of the algorithm generates two sub-tables which are
shown in Table 2.

TABLE 2. Sub-Tables of The Training Set Partitioned According to Decision Classes.

Sub-Table 1
Example no.

old   new
Size Color Shape Decision

1       1 medium blue brick yes
3       2 small red sphere yes
5       3 large green pill ar yes
7       4 large green sphere yes

Sub-Table 2
Example no.

old   new
Size Color Shape Decision

2      1 small red wedge no
4      2 large red wedge no
6      3 large red pill ar no

Applying the second step of the algorithm, we consider the first sub-table in Table 2:
For j=1, the list of attribute combinations comprises: { size}, { color}, and {shape}.

For the combination {size} the attribute value “medium” appears in sub-table 1 but
not in sub-table 2, so the value of max-combination becomes “medium”. Since other
available attribute values “small ” and “ large” appear in both sub-table 1 and sub-table
2 they are not considered at this step. The occurrence of { size} attribute value
“medium” is noted as one times and next combination is evaluated with max-
combination set to “green” . For combination {color} we have “blue” with an
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occurrence of one times and “green” with an occurrence of two times. Continuing
further with the combination {shape}, we have “brick” with one occurrence and
“sphere” with two occurrences. At the end of step 4, we have { color} attribute value
“green” and {shape} attribute value “sphere” marked with maximum number of
occurrences. Here either of the attribute values can be selected, because both of them
can classify the same number of training examples. The algorithm always selects the
first one(i.e. “green” in this case) by default, and this will make max-combination to
keep its current value of “green” . Rows 3 and 4 are marked as classified in sub-table
1, since the value of max-combination is repeated in these two rows, the following
production rule(Rule 1) is extracted:

Rule1
IF color is green THEN the decision is yes.

Now, ILA algorithm repeats step 4 through step 8 on the rest of the unmarked
examples in sub-table 1(i.e. rows 1 and 2). By applying these steps again we have
“medium” attribute value of  { size}, “blue” attribute value of { color}, “brick” and
“sphere” attribute values of { shape} occurring once.  Since the number of occurrences
are the same, the algorithm applies the default rule and selects the first one
considered(i.e. “medium” attribute value of  { size} ). Then the following rule(Rule 2)
is added to the rule set:

Rule2
IF size is medium THEN the decision is yes.

The first row in sub-table 1 is marked as classified and steps 4 through 8 are applied
again on the remaining row(i.e. the second row). Here we have “sphere” attribute
value of { shape} occurring once, so the third rule is extracted:

Rule3
IF shape is sphere THEN the decision is yes.

By marking the second row as classified all of the rows in sub-table 1 are now marked
as classified and we proceed on to sub-table 2. The “wedge” attribute value of
{ shape} occurs twice in the first and second rows in sub-table 2. So, these two rows
are marked as classified and Rule 4 is appended to the rule li st.

Rule4
IF shape is wedge THEN the decision is no.

In the remaining row in sub-table 2(i.e. the third row) we have { size} attribute with a
value of “ large” that appears also in sub-table 1. So according to the algorithm this
cannot be considered. The same applies to “ red” value of { color} and “pill ar” value of
{ shape} attributes. In this case, ILA increases j by 1, and generates 2-attribute
combinations, {size and color}, { size and shape}, and {color and shape}. The first
and third combinations satisfy the conditions as they both appear in sub-table 2 but
not in sub-table 1 for the same attributes. The  “large pill ar” value of { size and shape}
combination is ignored because it already appears in sub-table 1. According to this,
we can choose either the first or the third combination but the default rule allows us to
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select the first one. The following rule(Rule 5) is extracted and the third row in sub-
table 2 is marked as classified:

Rule5
IF size is large AND color is red THEN the decision is no.

Now, since all of the rows in sub-table 2 are marked as classified and no other sub-
table is available, the algorithm terminates.

3.1 Comparison of ILA and ID3
Several distinctions between ILA and ID3 are pointed out earlier in Section 2. For
comparison purposes, the rules resulting from applying ID3 on the same training set
and the ones produced by ILA are presented in Table 3.

TABLE 3. A Comparison Between Rules Generated by ID3 and ILA.

Algorithm Rule No. Rule
ID3
ILA

1 IF color=green AND shape=pill ar THEN yes
IF color=green THEN yes

ID3
ILA

2 IF shape=brick THEN yes
IF size=medium THEN yes

ID3
ILA

3 IF shape=sphere THEN yes
IF shape=sphere THEN yes

ID3
ILA

4 IF shape=wedge THEN no
IF shape=wedge THEN no

ID3
ILA

5 IF color=red AND shape=pill ar THEN no
IF size=large AND color=red THEN no

It is evident from Table 3 that the two algorithms generate the same number of rules
but Rule 1 extracted by ILA is simpler than the same rule generated by ID3 because
the latter has an unnecessary condition(i.e. shape = pill ar). Clearly rules 2, and 5 are
also different in both sets of rules but with the same level of complexity. However,
ILA could generate these same two rules, as for example, attribute value “brick” was
one of the choices. But we gain nothing if we change this choice since in both
algorithms the two rules have the same level of specificity and classify the respective
examples correctly.

Let us consider another training set from [Quinlan, 86] in Table 4:

TABLE 4. Weather Training Examples.

Example Outlook Temperature Humidity Windy Class
1 sunny hot high false N
2 sunny hot high true N
3 overcast hot high false P
4 rain mild high false P
5 rain cool normal false P
6 rain cool normal true N
7 overcast cool normal true P
8 sunny mild high false N
9 sunny cool normal false P
10 rain mild normal false P
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11 sunny mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 rain mild high true N

where P = Positive and N = Negative.

Applying ILA on the training set given in Table 4 we obtain the following rules:

Rule1:  IF outlook is overcast THEN the decision is Positive.
Rule2:  IF outlook is sunny AND humidity is high THEN the decision is Negative.
Rule3:  IF outlook is rain AND windy is true THEN the decision is Negative.
Rule4:  IF outlook is rain AND windy is false THEN the decision is Positive.
Rule5:  IF outlook is sunny AND humidity is normal THEN the decision is Positive.

For this example, these are the same rules generated by ID3. In this case, extracted
rules do not contain any unnecessary conditions. This is actually the worst case of
ILA. The worst case of ILA happens when it generates rules that do not contain
unnecessary conditions to eliminate.

To compare ILA with a much recent rule extraction system called RULES[Pham and
Aksoy, 95] and also with ID3 let us consider the training example set for classifying
the seasons given in Table 5.

TABLE 5. The Training Set for Season Classification Problem[Pham and Aksoy, 95].
Example Weather Trees Temperature Season(Class)

1 rainy yellow average autumn
2 rainy leafless low winter
3 snowy leafless low winter
4 sunny leafless low winter
5 rainy leafless average autumn
6 rainy green high summer
7 rainy green average spring
8 sunny green average spring
9 sunny green high summer

10 sunny yellow average autumn
11 snowy green low winter

The rules resulting from applying ID3 and RULES on the same training set and the
ones produced by ILA are presented in Table 6. Again ILA generates the same
number of rules but one rule (Rule 3) being simpler than that has been generated by
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ID3. The unnecessary condition that ID3 generated is “ temperature is average”, which
is eliminated as described in Table 6.

On the other hand we note that RULES generates seven rules from the same training
set, the first five of them being the same as the rules generated by ILA while rule 6
and rule 7 are generated neither by ID3 nor by ILA.

TABLE 6. A Comparison Between Rules Generated by ID3, RULES and ILA.

Algorithm Rule
No.

Rule

ID3
RULES

ILA

1 IF temperature = low THEN winter
IF temperature = low THEN winter
IF temperature = low THEN winter

ID3
RULES

ILA

2 IF temperature = high THEN summer
IF temperature = high THEN summer
IF temperature = high THEN summer

ID3
RULES

ILA

3 IF trees = yellow AND temperature = average THEN autumn
IF trees = yellow THEN autumn
IF trees = yellow THEN autumn

ID3
RULES

ILA

4 IF trees = leafless AND temperature = average THEN autumn
IF trees = leafless AND temperature = average THEN autumn
IF trees = leafless AND temperature = average THEN autumn

ID3
RULES

ILA

5 IF trees = green AND temperature = average THEN spring
IF trees = green AND temperature = average THEN spring
IF trees = green AND temperature = average THEN spring

ID3
RULES

ILA

6 
IF weather = snowy THEN winter


ID3
RULES

ILA

7 
IF weather = sunny AND trees = leafless THEN winter


4. Evaluation of Inductive Learning Algorithm(ILA)

The evaluation of learning systems is a complex task. One way it can be assessed is in
terms of its performance on specific tasks which are assumed to be representative of
the range of tasks which the system is intended to perform[Cameron-Jones and
Quinlan, 1994].

For evaluation purposes of ILA we have mainly used two parameters: number of rules
generated and average number of conditions. Number of rules has been included as an
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evaluation parameter because the aim here is to produce the minimum number of rules
as possible that classify the examples in the training set successfully. But a good
algorithm should produce rules that not only classify the cases in the training set but
also classify the unseen examples. So, the second parameter, that is the average
number of conditions, helps to give indication whether the algorithm can classify
more unseen examples or not. It can be easily realized that a rule with fewer number
of conditions can classify more examples, thus making the average number of
conditions a suitable parameter for the assessment of induction algorithms.

ILA extracts rules in canonical form, i.e. in the most general and simple form. This is
because ILA eliminates all unnecessary conditions from the rules and generates the
minimum number of rules that some other systems fail to produce, such as RULES(cf.
Table 6). The generality of rules extracted increases the classification capabilit y of an
algorithm. A rule becomes more general as the number of conditions on its LHS
becomes fewer, in other words, as the number of attributes becomes fewer. A general
rule also help in classifying incomplete examples in which one or more attributes are
unknown. For example in the Season Classification Problem, if an unknown example
that has an attribute-value pair “Trees are yellow” but has no value for { Temperature}
will be classified correctly by ILA, but not by ID3 even though both algorithms
produce the same number of rules as seen in Table 7.  Using the proposed algorithm
the opportunity to classify unknown examples(examples not listed in the training set)
therefore, becomes very high.

In this section we first describe the characteristics of training sets used in evaluating
ILA against ID3 and AQ algorithms. Next we outline experiments followed by a
discussion of evaluation parameters and a summary of results obtained. Finally,
elimination of unnecessary conditions and classification of unseen examples are
described.

4.1 Training Sets
We used three different training sets, namely Balloons, Balance and Tic-tac-toe in our
experiments with ILA.

Table 7 summarizes the characteristics of the three different domains used in the
experiments. We have obtained those training sets from the University of Cali fornia
Irvine Repository of Machine Learning Databases and Domain Theories via
anonymous ftp to charlotte.ics.uci.edu : pub/machine-learning-databases.

TABLE 7. Description of the Domains.
Domain

Characteristic
Balloons Balance Tic-tac-toe

Number of attributes 4+1 4+1 9+1
Number of examples 16 625 958
Average Values per attribute 2 5 3
Number of Class Values 2 3 2
Distribution of Examples
Among  Class Values

1.  25% are T
2.  75% are F

1. 46.08% are L
2. 07.84% are B
3. 46.08% are R

1.  65.3% are P
2.  34.7% are N
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4.2 Experiments
The algorithm outlined in Section 2 has been embodied in a new rule induction
system which takes as input a set of training examples entered as a file of ordered sets
of attribute values, each example being terminated by a decision attribute. The results
are output as individual rules for each of the classifications listed in terms of the
described attributes.

The results of applying ILA on these training sets are compared with three well-
known algorithms in inductive learning, namely ID3,  and AQ. We conducted two
different sets of experiments on the ILA. In the first experiment set performance of
ILA is assessed using two criteria-number of rules generated by the algorithm and the
average number of conditions on the IF-parts of rules. While in the second experiment
set we specifically measured relative performances of ID3, AQ, and ILA on
partitioned data to observe classification capability of the algorithms on unseen
example data.

4.2.1 Discussion
The number of rules is considered as an evaluation parameter because the main aim is
to produce the minimum number of rules as possible that can classify all of the
examples in the training set. The  second  parameter  that  has  great significance in
the evaluation process of inductive learning systems is the capability of the system to
classify as much unseen examples as possible. As discussed in section 3.1, the
average number of conditions can be used for this purpose successfully since a system
that produces fewer number of conditions can classify more examples

TABLE 8. Summary of the Results Obtained.

Training Set Algorithm No. of
Rules

Average no.
of

Conditions

Balloons
ID3
AQ
ILA

3
3
3

1.67
1.33
1.33

Balance
ID3
AQ
ILA

401
312
303

3.85
3.53
3.41

Tic-tac-toe
ID3
AQ
ILA

218
86
32

5.78
4.92
3.5

Table 8 shows the number of rules and average number of conditions in the resulting
rules for the four algorithms for each training set. It is clear that ILA can produce less
number of rules and less number of conditions on the IF-part of the rules than those
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generated by ID3 and AQ algorithms. So it is expected that ILA classifies more
unseen examples than above mentioned algorithms, as we shall discuss later.

A closer look at the figures in Table 8 shows that the results are almost the same for
the smallest data set tested, namely balloons. However, it is noted that as the training
sets get larger, ILA gives better results for both parameters in comparison to ID3 and
AQ algorithms.

4.2.2 Elimination of Unnecessary Conditions
From the previous discussion it is clear that ID3 and AQ algorithms produce rules that
contain unnecessary conditions. ILA, on the other hand, eliminates such conditions. It
is also clear from Table 8 that ILA produces rules which are significantly less in
number than those produced by these algorithms. In order to see the reason, let us
consider Tic-tac-toe training set, for which ID3 produces 218 rules while ILA produce
only 32 rules. Let us consider the following set of rules produced by ID3:

IF P1 = x & P3 = x & P5 = x & P7 = x & P9 = o THEN Class is Positive
IF P1 = o & P3 = x & P5 = x & P7 = x & P9 = x THEN Class is Positive
IF P1 = o & P3 = x & P5 = x & P7 = x & P9 = o THEN Class is Positive
IF P1 = x & P3 = x & P5 = x & P7 = x & P9 = b THEN Class is Positive
IF P1 = b & P3 = x & P5 = x  & P6 = x & P7 = x & P9 = o THEN Class is Positive

All of these rules are correct and classify the examples in the training set correctly, but
all of them contain unnecessary conditions. ILA eliminates these conditions and
produces only the following rule instead of five:

IF P3 = x &  P5= x & P7 = x THEN Class is Positive

In this case, ID3 produced 5 rules with 5.2 as the average number of conditions, while
ILA produced only one rule with 3 conditions which leads to low error rates for
classifying unseen examples as shown in Table 9. In fact, this is the reason why ILA
produces fewer number of rules with fewer average number of conditions in the rules.
This particular rule given above can classify 90 out of 958 examples from tic-tac-toe
data base while the five rules produced by ID3 can classify 73 examples. From above
discussion we can assume that ID3 is also affected by small junction problem. As
each conjunct supports fewer training examples it has a rather poor predictive
accuracy in unseen examples to be shown later in Section 4.2.3.

Similar situations can easily be found in rules produced by AQ and ID3 algorithms
especially for large training data sets. It is clear that when ILA eliminates unnecessary
conditions from the rules, the number of rules and average number of conditions
decrease significantly. This situation illustrates the difference in the values of these
two parameters between ILA on one side and the other algorithms on the other side.

4.2.3  Classification of Unseen Examples



14

Concept learning systems often describe a decision as a disjunction or conjunction of
conditions(attributes). Recently it is noted that small junctions(disjuncts), i.e., those
supported by few training examples, typically have poor predictive accuracy in unseen
examples. Several approaches are proposed to overcome this problem, for example by
[Ali and Pazzani, 1993]. All of the algorithms tested were affected by the small
junction problem with varying degrees, ID3 being the most affected one while ILA
was the least affected algorithm.

In order to test the three algorithms for the ability of classifying unseen examples,
each training set has been divided into two sets, the first set containing a sub set of the
training examples on which the algorithms are run, while the second set contains rest
of the examples which are selected randomly to form the unseen examples on which
the generated rules from all algorithms are tested.

Tests are conducted on different sizes of data as follows:

Partition I : about 2/3 of the original set is kept as the training set and 1/3 as the set of
unseen examples.

Partition II: about 1/2 of the original set is kept as the training set and 1/2 as the set of
unseen examples.

Partition III: about 1/3 of the original set is kept as the training set and 2/3 as the set of
unseen examples.

To enhance the generality of the results, these tests have been conducted on the above
cases for five times, each time with different (randomly selected) examples in both
sets that contain the training examples and the unseen examples as well.

Table 9 lists the average number of rules generated from the five tests of applying the
four algorithms on the three different training sets for the cases mentioned above.

Table 9. Number of Rules Generated.

Training Set Partition ID3 AQ ILA

Balloons I
II
III

3
3
4

3
3
4

3
3
2

Balance I
II
III

212
164
139

178
134
107

160
121
99

Tic-tac-toe I
II
III

129
116
74

53
57
38

18
28
27

From Table 9, it is clear that ILA produces the fewest number of rules compared with
ID3 and AQ. For the small data set, Balloons, the results are almost the same with
only a small difference among them. However, as the size of the training sets
increases, the difference between ILA and other algorithms becomes obvious, as in
the case of Balance and Tic-tac-toe sets.
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Table 10, on the other hand, shows the powerful aspects of ILA. It shows the average
of error rates of applying the four algorithms on the training sets of the same cases in
Table 9, also for the five tests. It is apparent that the error rates of ILA is the best
among all compared with ID3 and AQ

Table 10. Error Percentages for Classifying Unseen Examples.

Training Set Partition ID3 AQ ILA

Balloons I
II
III

0.0%
0.0%
30.8%

0.0%
0.0%
30.8%

0.0%
0.0%
30.8%

Balance I
II
III

64.4%
53.0%
54.7%

41.5%
40.6%
51.1%

40.4%
34.6%
47.7%

Tic-tac-toe I
II
III

29.7%
31.2%
42.5%

13.8%
18.4%
4.4%

4.1%
6.8%
2.4%

5. Conclusions

ILA is a supervised, simple but powerful inductive algorithm for classifying symbolic
data. In particular it deals with discrete and symbolic attribute values. The results
obtained so far indicate that ILA is comparable to other well -known algorithms.  In
this paper, ILA has been applied to several domains to derive IF-THEN rules from
training examples. The results obtained are compared with results obtained from
applying two well -known algorithms in the domain, namely ID3 and AQ on the same
training sets. It has been shown that in all of the tests the generality of the extracted
rules is achieved. This is due to the fact that ILA eliminates the unnecessary condition
problem. ILA’s accuracy of rules induced from an unseen training set are better than
the accuracy of a decision tree induced by ID3 and rules generated by AQ.

As a further research, two new improvements to the algorithm are being added. The
first is the abilit y to deal with noisy and incomplete examples, where some of the
attribute values are wrong or unknown. The second improvement is to convert the
algorithm in a way to be able to treat continuous attribute values.
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