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Abstract

A practical criterion for the success of a knowledge-based problem-solving system
is its usefulness as a tool to those working in its specialized domain of expertise.
Here we describe several applications of the PROSPECTOR consultation system
to mineral exploration tasks. One was a pilot study conducted for the National
Uranium Resource Estimate program of the U.S. Department of Energy. This

application estimated the favourability of several test regions for occurrence of

sandstone uranium deposits. For credibility, the study was preceded by a perfor-

mance evaluation of the relevant portion of PROSPECTOR's knowledge base,

which showed that PROSPECTOR's conclusions agreed very closely with those

of the model designer over a broad range of conditions and levels of detail. A

similar uranium favourability evaluation of an area in Alaska was performed

for the U.S. Geological Survey. Another application involved measuring the

value of a geological map. We comment on characteristics of the PROSPECTOR

system that are relevant to the issue of inducing geologists to use the system.

1. INTRODUCTION

This paper describes an evaluation and several applications of a knowledge-based

system, the PROSPECTOR consultant for mineral exploration. PROSPECTOR is a

rule-based judgmental reasoning system that evaluates the mineral potential of a

site or region with respect to inference network models of specific classes of ore

deposits. Knowledge about a particular type of ore deposit is encoded in a

computational model representing observable geological features and the relative
significance thereof.

t Any opinions, findings, and conclusion or recommendations expressed in this report are
those of the author and do not necessarily reflect the views of the U.S. Geological Survey.
A shorter version of this paper appeared as (Gaschnig 1980b). Parts of this paper are

excerpted from (Gaschnig 1980a).
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ASSERTION SPACES:

ABBREVIATED 7/11.9
SPACE NAME

DESCRIPTIVE TEXT>,°
(abridged for brevity)

NCAHR 0.5

THIS SPACE IS DEFINED
AS A LOGICAL CONJUNCTION

PRIOR PROBABILITY
OF OCCURRENCE
(In some cases a second
prior probability value
is given in parentheses,
which is used to obtain

• the desired rule interactions.)

NOTE: If box is dashed rather than solid, then its complete definition
(including subnetwork, if any) appears on another page.

NETWORK LINKS:

LOGICAL COMBINATION
(AND, OR, NOT)

HYPOTHESIS

PLAUSIBLE COMBINATION
(RULES)

A

LIKELIHOOD
RATIO LN

5,0.5

LIKELIHOOD
RATIO LS

EVIDENCE:

INTERPRETATION:

In the case of an "AND"
connection, all pieces of
evidence must be present
to establish the hypothesis.
In the case of an "OR"
connection, the hypothesis
is established by any piece
of evidence.

INTERPRETATION:
LS measures the degree of
sufficiency or suggestive-
ness of the evidence for
establishing the hypothesis.
(A larger value of LS means
greater sufficiency.) LN
measures the degree of
necessity of the evidence
for establishing the hy-
pothesis. (A smaller value of
LN means greater necessity.)
The value LS = 1 (LN = 1)
indicates that the presence
(absence) of the evidence is
irrelevant to the hypothesis.
For example, if LS > 1 and
LN =1, then the presence of
the evidence is suggestive of
the hypothesis; its absence
does not lower the proba-
bility of the hypothesis.

CONTEXT RELATION

Fig. 1 — Schematic key to PROSPECTOR model diagrams.
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INTERPRETATION:

Do not attempt to establish
space B unless and until
space A has been established
with certainly greater than
zero and less than or equal
to 5. Context interval [-5,01
indicates A must have nega-
tive certainty before attemp-
ting to establish B. Context
interval [-5,51 indicates
simply that one should ask
about A (regardless of the
answer) before asking about
B. Omitted context interval
indicates (0,51.
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The collection of assertations and rules comprising an inference network are

easiest to understand when presented in a graphical format. Figure 1 presents a

schematic key for interpreting PROSPECTOR model diagrams. Figure 2 depicts
the top level of a PROSPECTOR model, called RWSSU, for a class of 'Western
States' sandstone uranium deposits. Dashed boxes in that diagram indicate
sections of the model that are defined on other pages of the complete diagram.
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Fig. 2 — Top levels of inference network for regional-scale Western-States sandstone'
uranium model (RWSSU). •
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Fig. 3 — A portion of the inference network for the RWSSU model.

304



GASCIINIG

For example, Fig. 3 defines the FAVIIOST section appearing in a dashed box in
in Fig. 2. The complete diagram of the RWSSU model spans 31 pages (Gaschnig
1980a). An overview of the PROSPECTOR system and its inference network
methodology is provided in Duda, Gasching, Hart & 1979.

Here we focus on the RWSSU model, and report the results of extensive

quantitative tests measuring how faithfully it captures the reasoning of its

designer across a set of specific sites (used as case studies in fine-tuning the

model), and with respect to the detailed subconclusions of the model as well as
its overall conclusions.

Having so validated the performance of the RWSSU model, we then describe
a pilot study performed in conjunction with the National Uranium Resource

Evaluation (NURE) program of the U.S. Department of Energy. The pilot study

applied the RWSSU model to evaluate and compare five target regions, using

input data provided by DoE and USGS geologists (using the medium of a model-

specific questionnaire generated by PROSPECTOR. The results of the experiment
not only rank the test regions, but also measure the sensitivity of the conclusions

to more certain or less certain variations in the input data.
One interesting facet of this study is that several geologists provided input

data independently about each test region. Since input data about each region

varies among the responding geologists, so do the conclusions; we demonstrate
how PROSPECTOR is used to identify and resolve the disagreements about

input data that are most significantly responsible for differences in the resulting

overall conclusions.
The paper concludes with brief descriptions of other recent practical appli-

cations of PROSPECTOR.

2. VALIDATING PROSPECTOR MODELS

2.1. Methodology

The practical usefulness of an expert system is limited if those working in its
domain of expertise do not or will not use it. Before they will accept and use the
system as a working tool, such people (we shall call them the 'domain users')
usually expect some evidence that the performance of the system is adequate for

their needs (e.g., see Yu et al. 1978). Accordingly, considerable effort has been

devoted to evaluating the performance of the PROSPECTOR system and its

various models (Duda etal. 1978, Gaschnig 1979). In the present case, we first

needed to validate the performance of the uranium model to be used in the pilot

study for the U.S. Department of Energy.
The methodology used to evaluate PROSPECTOR's performance is discussed

in detail elsewhere (Duda et al. 1978, Gaschnig 1979). For brevity, here we

outline a few relevant factors. The PROSPECTOR knowledge base contains a

distinct inference network model for each of a number of different classes of ore

deposits, and a separate performance evaluation is performed for each model.

Here we are concerned with one such model, called the regional-scale 'Western
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States' sandstone uranium model (RWSSU), designed by Mr R. Rackley. Since

there exist no objective quantitative measures of the performance of human

geologists against which to compare that of PROSPECTOR, we instead use a
relative comparison of the conclusions of a PROSPECTOR model against those of
the expert geologist who designed it. To do so, first a number of test regions are
chosen, some being exemplars of the model and others having a poor or less

good match against the model. For each such case, a questionnaire is completed
detailing the observable characteristics that the model requests as inputs for its

deliberation. PROSPECTOR evaluates each such data and derives its conclusion
for that test case, which is expressed on a scale from —5 to 5. As a basis of com-

parison, we also independently elicit the model designer's conclusion about each
test case, based on the same input data, and expressed on the same — 5 to 5
scale. Then we compare PROSPECTOR's predictions against the target values
provided by the model designer.

2.2. Comparing PROSPECTOR with the Expert

Table 1 compares the top-level conclusions of PROSPECTOR (using the RWSSU
model) against the corresponding target values provided by the model designer
for eight test regions.

Table 1 — Comparison of RWSSU model with designer for eight
cases.

Test region
Target
value

Prospector
Difference

score
•

Black Hills 3.50 4.33 —0.83
Crooks Gap 4.70 4.26 0.44
Gas Hills 4.90 4.37 0.53
Shirley Basin 4.95 4.13 0.82
Ambrosia Lake 5.00 4.39 0.61
Southern Powder River 4.40 4.40 0.00
Fox Hills 1.50 2.17 —0.67
Oil Mountain 1.70 3.32 —1.62

Table 1 indicates that the average difference between the PROSPECTOR
score and the corresponding target value for these eight cases is 0.69, which is
6.9% of the —5 to 5 scale.

One feature of the PROSPECTOR system is the ability to explain its con-
clusions at any desired level of detail. Besides the overall conclusions reported
above, quite detailed information about PROSPECTOR's conclusions was
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collected for each test case. In its normal interactive mode, the user can interro-
gate PROSPECTOR's conclusions by indicating which conclusions or subcon-
clusions he wishes to see more information about. The same sort of information
is presented in Table 2 (using the Gas Hills region as an example), in the form of
PROSPECTOR's overall evaluation, the major conclusions on which the overall
evaluation is based, and the subconclusions that support each major conclusion.
For brevity, each section of the RWSSU model represented in Table 2 is identified
by a symbolic name, which is indented to show its place in the hierarchy of the
model. A key describing each symbolic name follows Table 2. For comparison,
we first elicited from the model designer his target values for each section of the
model listed in Table 2; these values are included in Table 2.

Table 2 - Detailed comparison of RWSSU model with designer
for Gas Hills region.

Section
of model

Target
value

Prospector Difference
score

RWSSU 4.90 4.37 0.53
FTRC 4.80 4.64 0.16

TECTON 4.50 4.50 0.00
AHR 5.00 4.95 0.05
FAVHOST 4.80 5.00 -0.20
SEDTECT 4.80 4.88 -0.08

FAVSED 4.90 4.68 0.22
FLUVSED 4.90 4.68 0.22
MARINESED -3.50 -2.07 -1.43
AEOLSED -2.50 -2.10 -0.40

FMA 4.95 4.41 0.54
RBZONE 5.00 4.60 0.40
AIZONE 4.00 4.77 -0.77
MINZONE 5.00 5.00 0.00

Average difference = 0.36 (average of absolute values).

Key to assertion names:

RWSSU: the region is favourable for 'Western States' sand-
stone uranium deposits

FTRC: ' there are favourable tectonic and regional conditions
TECTON: the prospect lies in a favourable tectonic setting
AHR: there is admissible host rock
FAVHOST: the prospect is in a favourable host
FSCR: the sand bodies are of favourable size or are channel

remnants
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FAVSED:
FLUVSED:
MARINESED:
AEOLSED:

FMA:
RBZONE:
AIZONE:
MINZONE:

there is a favourable sedimentology
there is a favourable fluvial sedimentology
there is a favourble marine sedimentology
there is favourable aeolian sedimentology
there are favourable mineralization and alteration

there is a favourable remote barren zone
there is a favourable altered interior zone
there are indications of a possible mineralized zone

The data in Table 2 indicate that PROSPECTOR not only reaches essentially

the same numerical conclusions as its designer, but does so for similar reasons.
The type of detailed comparison shown in Table 2 was repeated for each of

the eight test cases listed in Table 1, resulting in 112 distinct comparisons between
PROSPECTOR's prediction and designer's target value (i.e., 8 test regions times

14 sections of the model). Table 3 shows the results. Each column in Table 3 corres-
ponds to the column labeled "Difference" in Table 2. The letters A through H in
Table 3 identify the eight test cases in accordance with the key immediately
following this table. Hence the data in Table 3 under column C is taken from
Table 2.

As indicated by the datum in the lower right corner of Table 3, the grand
average of the RWSSU model's error in predicting Mr RacIdey's conclusions across
the 112 combinations of 8 test regions and 14 major sections of the model is
0.70, which represents 7.0% of the —5 to 5 scale.

The rightmost column in Table 3 lists the averages over the eight test regions
for each of the 14 major sections of the RWSSU model. Hence this column ranks
these model sections according to their predictive abilities. This information
suggests a priority ordering for the future revisions of the model, in that those
sections having the largest average error (e.g., MARINESED, MINZONE, and so
on) are the ones that could benefit most by further fine-tuning. By comparing
these values in Table 3 with the analogous averages in a table corresponding to a
revised model, one can measure quantitatively the extent to which the revisions,
achieved the objectives that motivated them. In point of fact, the fine-tuning
of the RWSSU model to its current status was based on just such a feedback
process.

2.3 Sensitivity Analysis

The user's certainty about inputs provided to PROSPECTOR are expressed on —5
to 5 scale (as opposed to simply ̀yes' or ̀no', for example). Hence PROSPECTOR's
conclusions depend on the degree of certainty of its inputs. To measure the
sensitivity of conclusions to perturbations in the certainties of the inputs, we
make two additional executions of PROSPECTOR for each set of input data.
In one case we change each of the user's input certainties by one unit closer to
zero, so that, for example, a 4 becomes 3 and a —3 becomes —2. In the other
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case, each input certainty is changed by one unit toward 5 or -5, e.g., -3 becomes

-4. These 'less certain' and 'more certain' variants of the original input data
set are then run through PROSPECTOR, so that the resulting conclusions can

then be compared with those obtained from the original 'standard' data set, as
illustrated in Table 4. In Table 4 'maximum difference' denotes the larger of the

two differences between standard and less certain conclusions on the one hand,
and standard and more certain conclusions on the other.

Table 4 - Standard, 'more certain', and 'less certain' conclusions
(RWSSU model, overall conclusions, 8 test regions).

Less More Maximum
Standard

certain certain difference

Black Hills 4.20 4.33 4.37 0.13
Crooks Gap 4.12 4.26 4.25 0.14
Gas Hills 4.30 4.37 4.40 0.07
Shirley Basin 3.99 4.13 4.13 0.14
Ambrosia Lake 4.32 4.39 4.40 0.07
Southern Powder River 4.36 4.40 4.42 0.04
Fox Hills 1.78 2.17 2.23 0.39
Oil Mountain 1.90 3.32 3.49 1.42

Average: 0.12

Of the eight test regions compared, the data in Table 4 indicate that Oil
Mountain is the most sensitive to more certain or less certain changes in input
certainties. The other seven cases are very stable in this respect. As indicated at
the bottom of Table 4, there is an average 1.2% change in conclusions in response
to a 10% change in input certainties (i.e., one unit of certainty over a 10-point
scale).

Besides the overall conclusions reported in Table 4, quite detailed information
was collected for each individual test region. Inspection of detailed sensitivity
conclusions for various sections of the model reveals the source of the sensitivity
reflected in the overall conclusions represented in Table 4.

We shall present one example in detail below, for the case of Oil Mountain,
for which sensitivity about overall conclusions in relatively large. For the cited
case, Table 5 compares PROSPECTOR's standard, 'more certain,' and 'less
certain' conclusions for each of the 14 major sections of the RWSSU model that
were detailed in Table 2 and 3. (See the key following Table 2 to identify the
geological assertations corresponding to the symbolic names of these sections.)

The data in Table 5 concerning Oil Mountain reveal that the sensitivity of
the overall conclusion (maximum difference of 1.42) is due to the various sensi-
tivities of the FTRC, FAVSED, and FMA sections (maximum difference 62,1.08,
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Table 5 - Detailed standard, "more certain", and "less certain" runs (RWSSU
model, Oil Mountain region, 14 sections of the model).

Less
certain

Standard
More
certain

Maximum
difference

RWSSU 1.90 3.32 3.49 1.42
FTRC 3.23 3.85 3.66 0.62

TECTON 3.05 3.81 3.81 0.76
AHR 1.04 1.28 0.96 0.32
FAVHOST 3.99 5.00 5.00 1.01
SEDTECT 4.32 4.57 4.58 0.25

FAVSED 3.15 4.23 4.42 1.08
FLUVSED 3.15 4.23 4.42 1.08
MARINESED -0.27 -3.10 -4.22 2.83
AEOLSED -3.28 -4.44 -3.76 1.16

FMA 0.78 1.64 1.93 0.86
RBZONE 3.98 4.51 4.73 0.53
AIZONE -1.59 0.00 0.08 1.59
MINZONE 1.45 3.23 3.82 1.78

Average: 1.09

and 0.86, respectively). To illustrate a deeper level of analysis, within the FMA
section the data in Table 5 indicate that the mineralized zone section displays
highest sensitivity (1.78), followed by the altered interior zone section (1.59),
and finally by remote barren zone (which is rather stable in this case - maximum
difference = 0.53). Hence, this sort of analysis can pinpoint the section (s) of a
model most sensitive to uniform changes in certainty of input data. For most of
the sections, there is little change from standard to 'more certain' data, since a
large fraction of the standard inputs already expressed near or complete certainty.
Note also that for several sections of the model (FTRC, AHR, MARINESED) the
'more certain' score in Table 5 is actually less than the corresponding standard
score. These cases reflect a negative effect produced by LS or LN values (discussed
in Fig. 1) that is larger than the positive effect of those values greater than 1.

2.4 Comparison of the WSSU, RWSSU, and EDSU Models
Two other sandstone uranium models were also subjected to performance
evaluations analogous to those described above for the RWSSU model. Details of
these experiments with the prospect-scale 'Western States' sandstone uranium
model (WSSU) and the epigenetic carbonaceous sandstone uranium model (ECSU)
are given in Gaschnig 1980a. Below we summarize some of the results concerning
the RWSSU, WSSU, and ECSU models.
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First we shall compare the sizes of these three models. As described previously,

a PROSPECTOR model is represented as a network of assertions and the rules of
geological inference that connect them. Hence, the size or complexity of a model
can be measured in a simple way by the number of assertions and rules it contains.
Two types of assertions can be distinguished: those concerning directly observable
field evidence, and others concerning higher-level conclusions that can be inferred
from such field evidence. Table 6 summarizes these statistics for the WSSU,
RWSSU, and ECSU models.

Table 6 — Size statistics for the PROSPECTOR uranium models.

Model Designer Number of evidence Total number Number
assertions of assertions of rules

WSSU R. Rackley 105 200 . 148
RWSSU R. Rackley 107 205 152
ECSU S. Adams 109 197 153

Total: 321 602 453

As enumerated in Table 6, these three models are of comparable size. Other
recently developed PROSPECTOR models are of the same approximate size as
the present models (see Table 1 in Duda etal. 1979).

Table 7 compares the performance of three uranium models.
The numbers in Table 7 are derived as follows. The total number of PROS-

PECTOR runs per model (item 2) is three times the number of test sites or
regions (item 1), because a 'standard 'more certain,' and 'less certain' run were
performed for each completed questionnaire. The number given in item 3a is
derived from Table 1 for the RWSSU model, and from analogous data for the
WSSU and ECSU models. The numbers given in item 3b are derived from Table
3 for the RWSSU model, and from analogous data for the WSSU and ECSU
models. Similarly, the numbers in item 4 are derived from Table 4 in the case of
the RWSSU model. The number given in item 6 is the product of the number of
test sites or regions (item 1) and the number of detailed sections of the model for
which target values were obtained from the model designer (item 5): 8 X 12 =
112 for the WSSU and RWSSU models; 9 X 19 = 171 for the ECSU model. This
product is the number of data points averaged to obtain the numbers in item 3b.
Note that the values in items 3 and 4 in Table 7 are expressed as percentages of
our 10-point certainty scale used to express PROSPECTOR conclusions. The
fourth column in Table 7 gives the total of the other three columns for itemsl, 2,
5, and 6; it gives the average of the other three columns for items 3 and 4.

Inspection of the data in Table 7 reveals that the three models have excellent
average performance both in overall conclusions and in detailed subconclusions.
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Table 7 — Comparative performance of the WSSU, RWSSU, and ECSU models.

WSSU RWSSU ECSU
Total/
average

1. Number of test sites or regions: ' 8 8 9 25
2. Total number of PROSPECTOR runs: 24 24 27 75
3. Average difference between
PROSPECTOR score and model

designer's target value ...
(a) for overall conclusions: 6.6% 6.9% 8.0% 7.2%
(b) for detailed conclusions: 7.2% 7.0% 7.8% 7.3%

4. Average sensitivity of overall
conclusions to unit change of
certainty in input data: 2.2% 1.2% 4.0% 2.5%

5. Number of sections of model
represented by detailed conclusions: 14 14 19 47

6. Total number of comparisons for
detailed conclusions: 112 112 171 395

Specifically, the difference between PROSPECTOR score and corresponding
model designer's target value averages to a 7.3% difference on a 10-point scale in
the case of overall conclusions, and to 7.4% difference in the case of detailed
conclusions. Each of the three models has low average sensitivity to fluctuations
in the certainty ascribed to the field observations on which the tests are based,
averaging 2.5% difference from the 'standard' case for overall conclusions. Finally,
the differences in performance levels of the three models are small. One should
note, however, that the performances of the WSSU and RWSSU models are slightly
better than that of the ECSU model, reflecting the fact that the former models
have been subjected to somewhat more tuning and testing than the latter.
Additional tuning of the ECSU model could be expected to result in improved
performance.

3. A PILOT STUDY FOR DOE's NATIONAL URANIUM RESOURCE
EVALUATION

3.1. Overall Results

Having established the credibility of the RWSSU model by the test results just
discussed, we then undertook an evaluation of five test regions selected by the
Department of Energy. For this purpose USGS and DoE geologists completed
questionnaires for this model. As a sensitivity test, several geologists indepen-
dently completed questionnaires for each test region. For comparison, the model
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designer, R. Rackley, also completed questionnaires for five test regions. The
overall results are reported in Table 8t.

The results in Table 8 indicate that the Monument Hill, Pumpkin Buttes, and
Moorecroft regions are very favourable, and about equally favourable, for occur-
rence of 'Western States' sandstone uranium deposits. Northwest Gillete is scored
as moderately favourable, whereas White River is neutral (balanced positive and
negative indicators).

Note that each respondent has had different exposure to the target regions,
in terms of both first-hand, on-site experience and familiarity with field data
reported in the literature. These difficulties in experience are reflected in their
answers on the questionnaires. Since different inputs yield different conclusions,
one would expect a spread in the certainties about each region, reflecting the
differences in input data provided by the various geologists. Inspection of Table 8
reveals that the scores derived from different geologists' input data about the
same region agree rather closely for each region except Northwest Gillette (see
the column labelled "Range"). These generally close agreements reflect the
capability of PROSPECTOR models to synthesize many diverse factors, mechani-
cally ascertaining general commonalities without being unduly distracted by
occasional disparities.

In cases such as Northwest Gillette in which a large difference in conclusions
occurs, it is easy to trace the source of the disagreement by comparing the
individual conclusions for different sections of the model (representing different
geological subconclusions), as in Table 9.

Table 9 - Comparison of detailed conclusions about Northwest Gillette region.

Geologist Rackley Average

RWSSU 0.10 3.66 3.42 3.56
FTRC 4.67 3.80 4.63 4.37

TECTON 4.90 4.50 4.50 4.63
AHR 4.95 1.03 4.94 3.64
FAVHOST 5.00 5.00 5.00 5.00
SEDTECT 4.98 4.33 4.78 4.69

FAVSED 0.04 3.92 4.79 2.92
FLUVSED 0.04 3.92 4.79 2.92
MARINESED -4.60 3.34 0.02 -0.41
AEOLSED -4.99 -2.10 -3.23 -3.44

FMA 0.27 2.45 1.33 2.18
RBZONE 4.10 4.83 4.73 4.55
AIZONE -3.29 2.40 0.00 -0.30
MINZONE 0.41 2.82 2.59 1.94

t Note that geologist 'D' divided the Moorcroft region into two subregions and completed a
questionnaire for each, resulting in two conclusions (3.88 and 4.00 in Table 8).
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Inspection of Table 9 reveals that the conclusions agree fairly closely for the
FTRC section of the model, and less closely for the FAVSED and FMA sections.
Tracing the differences deeper, one sees that of the three factors on which FMA
depends, there is fairly good agreement about RBZONE, but larger differences in
the cases of the AIZONE and MINZONE sections. In some cases, such a detailed
analysis can isolate the source of overall disagreement to a few key questions
about which the respondents disagreed. These can then be resolved by the res-
pondents without the need to be concerned with other disagreements in their
questionnaire inputs that did not significantly affect the overall conclusions.

3.2. Sensitivity Analysis

Table 10 lists PROSPECTOR's overall conclusions about the five test regions,
comparing standard, 'more certain,' and 'less certain' interpretations of the
questionnaire input data, analogous to those described earlier in validating the
RWSSU model. (The standard results are the same as those in Table 8.) The
column labelled 'Maximum difference' in Table 10 is the maximum of the
difference between the standard and 'less certain' scores on the one hand, and
between the 'more certain' and standard scores on the other. Hence this column
gives the maximum sensitivity for each case.

Table 10 - Standard, 'more certain', and 'less certain' runs (RWSSU model,
overall conclusions, five test regions).

Site Geologist Less
certain

Standard More
certain

Maximum
difference

Monument Hill: A 4.02 4.17 4.20 0.15
B 3.70 3.32 3.34 0.38
C 4.21 3.97 3.88 0.24

Rackley 4.32 4.40 4.41 0.08

Pumpkin Buttes: A 4.09 4.20 4.22 0.11
B 3.69 3.30 3.31 0.39
C 4.13 4.19 4.22 0.06

Rackley 4.34 4.40 4.41 0.06

Moorcroft: C 3.72 3.92 3.97 0.20
D 3.81 3.88 3.87 0.07
D 3.94 4.00 4.01 0.06

Rackley 3.71 4.00 4.24 0.29

Northwest Gillette: C 3.26 3.64 3.94 0.38
D 0.91 0.54 0.89 0.37

Rackley 2.99 3.42 3.63 0.43

White River: USGS team 0.34 0.13 0.07 0.21
Rackley 0.13 0.01 0.00 0.12

Average: 0.21
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The data in Table 10 indicate very stable performance in each case tested,
averaging 2.1% difference on the ten-point certainty scale.

Besides the overall conclusions reported in Table 10, quite detailed infor-
mation was collected for each individual run. We shall present one example in
detail below, for the case of geologist A's data about Monument Hill. For the
cited case, Table 11 compares PROSPECTOR's standard, 'more certain,' and 'less
certain' conclusions for each of the 14 major sections of the RWSSU model that
were detailed in previous tables.

Table 11 - Detailed standard, 'more certain', and 'less certain' runs (RWSSU
model, Monument Hill region, Geologist A).

Section of model Less
certain

Standard More
certain

Maximum
difference

RWSSU 4.02 4.17 4.20 0.15
FTRC 4.02 4.43 4.57 0.41

TECTON 3.60 4.50 4.50 0.90
AHR 4.89 4.93 4.95 0.04
FAVHOST 1.97 2.98 3.99 1.01
SEDTECT 4.36 4.79 4.94 0.43

FAVSED 4.22 4.56 4.66 0.34
FLUVSED 4.22 4.56 4.66 0.34
MARINESED 0.02 -2.39 -3.65 2.37
AEOLSED 0.38 0.14 0.12 0.24

FMA 3.30 3.42 3.41 0.12
RBZONE 4.57 4.74 4.84 0.17
AIZONE 3.28 3.41 3.40 0.13
MINZONE 4.66 4.84 4.86 0.18

Average: 0.49.

The 'maximum difference' column in Table 11 identifies three sections of
the model exhibiting significantly greater sensitivity than the other sections for
Monument Hill, namely, TECTON, FAVHOST, and MARINESED. The sensitivity
of MARINESED is irrelevant in this case, since the sedimentology (FAVSED) is
clearly established as fluvial (FLUVSED) rather than marine. The sensitivities of
TECTON and FAVHOST are reflected in the somewhat smaller sensitivity of
FTRC, which, in turn, contributes to a small sensitivity in the overall conclusion.
Hence, senstivities propagate upward through the model, but the impact of a
single sensitive section of the model is usually diluted when combined with
other more stable factors. This is a salient consequence of the hierarchical structure
of PROSPECTOR models. In any case, this kind of analysis can pinpoint the
section (s) of a model most sensitive to uniform changes in certainty of input data.
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3.3. Conclusions

This pilot study for DoE's NURE project has attempted to demonstrate the
methodological features of the PROSPECTOR approach for problems of resource
assessment. The numerical data tabulated in the preceding subsection, along with
complete analogue sets of tables in (Gaschnig 1980a), provided extensive evidence
addressing a variety of questions:

— Measuring the faithfulness of the RWSSU model to its designer's reasoning

across several regions and across several major sections of the model.
— Ranking the test regions.
— Determining the range in certainties for each region, reflecting different

geologists' input data.
— Determining whether agreement about a region extends from overall con-

clusions to detailed subconclusions as well.
— Pinpointing the source of disagreement about input data that resulted in

any disagreements in overall conclusions about a region.
— Measuring the sensitivity of conclusions to 'more certain' or 'less certain'

variations in each individual's input data.

Table 12 highlights many of these results.

Table 12 — Summary of results of the DONE NURE pilot study.

Results/Remarks

1. Average difference between
PROSPECTOR score and model
designer's target value ...

(a) for overall conclusions:
(b) for detailed conclusions:

2. Ranking test regions:
(Table 8)

3. Variability of conclusions about
each region, reflecting different
geologists' input data:
(Table 8; see also Table 9)

4. Average sensitivity to unit change
in certainty of input data:
(Table 10; see also Table 11)

7.5% over 5 regions
9.2% over 70 combinations of

5 regions and 14 sections of model

Very favourable — Monument Hill
Pumpkin Buttes
Moorcroft

Moderately favourable — Northwest
Gillette

No match — White River

Negligible — Moorcroft
White River

Small — Monument Hill
Pumpkin Buttes

Large — Northwest Gillette

2.1% over 17 questionnaires about
5 regions
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In sum, we have performed a precise, step-by-step evaluation of five target
regions, beginning with an independent detailed assessment of the accuracy of
the RWSSU model in predicting its designer's reasoning; we then scored each
region in accordance with the input data provided by several geologists; we further
examined the numerical results in detail to determine their sensitivity to a variety
of factors; finally we demonstrated how the PROSPECTOR approach allows one
routinely to identify and resolve disagreements in conclusions resulting from
differences in input data provided by different geologists.

This evidence demonstrates clearly and extensively the usefulness of PROS-
PECTOR not only for evaluating regional mineral potential, but also for actually
quantifying the credibility and stability of its conclusions. Given the variabilities
and uncertainties inherent in the task of resource assessment, the PROSPECTOR
methodology introduces a powerful new tool by which to obtain assessments
significantly more objective, repeatable, uniform, self-calibrating, detailed, and
open to public inspection (hence defendable), than those presently available
using other methods.

4. A LAND USE STUDY IN ALASKA

PROSPECTOR has also been applied to several other tasks, which we mention
here briefly. In one case, PROSPECTOR was used to evaluate several regions on
the Alaskan Peninsula for uranium potential (Cox, Detra, and Detterman 1980).
In this case the practical issue was to evaluate the mineral potential of Federal
lands for the purpose of deciding their ultimate disposition (e.g., wilderness
status versus commercial exploitation). As in the NURE study, geologists familiar
with the locales completed questionnaires corresponding to two PROSPECTOR
models representing different types of uranium deposits; the questionnaire data
were processed by PROSPECTOR, resulting in evaluations that included several
levels of geological detail. Table 13 shows the results. (See the key following
Table 2 to identify the geological assertions corresponding to the symbolic
names of the various sections of the model listed at the left in Table 13.)

Inspection of Table 13 shows that the three formations exhibit mild to
moderate favourability for this type of deposit. Looking into the three major
categories of evidence underlying these evaluations, we see that all three for-
mations are moderately to very favourable with respect to two of the factors
(namely, FTRC — tectonic and regional conditions; and FAVSED — sedimen-
tology). However, none of the three formations offers more than a very weak
match against the third major category, namely FMA — favourable mineralization
and alteration. By inspecting the three factors underlying the latter (namely
RBZONE, AIZONE, and MINZONE), it turns out that the three formations offer
essentially no match with respect to the most dominant of the three factors,
namely MINZONE — a favourable mineralized zone. In sum, Table 13 shows the
three regions tested have environments generally favourable for the type of
deposit being assessed, but do not satisfy the key requirement of having a good
mineralized zone.
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Table 13 - Uranium favourability of three areas is Alaska (using

the RWSSU model).

Section of model Chignick Tolstoi Bear Lake
formation formation formation

RWSSU 2.91 2.28 1.06

FTRC 3.59 4.01 4.32

TECTON 3.81 3.81 3.81

AHR 1.09 1.66 4.53
FAVHOST 4.73 5.00 3.99
SEDTECT 4.04 4.51 3.57

FAVSED 4.81 4.68 3.64
FLUVSED 4.81 4.68 3.64
MARINESED 3.74 0.04 -1.08
AEOLSED 2.27 0.05 -4.90

FMA 1.08 0.58 0.19
RBZONE 4.62 4.47 1.99
AIZONE 3.19 1.64 0.00
MINZONE 0.41 0.41 0.25

To provide evidence concerning the sensitivity of these results to the uncer-
tainties and omissions of the field observations on which the results are based,

this study also included 'more certain' and 'less certain' runs analogous to those
described earlier. In doing so we demonstrated that the results are rather insensitive
to unit perturbations in the certainties of the questionnaire input data. In short,
small perturbations of the inputs produced smaller perturbations of the outputs.

One interesting facet of this study was that one of the USGS geologists
charged with evaluating these regions was not himself an expert about uranium
deposits. By using PROSPECTOR, these geologists, in effect, augmented their
own experience with the judgment of a noted authority on the specilized types
of deposits being considered. Hence, this is another case in which specialized
geological expertise has been disseminated to where it was needed.

5. AN EXPERIMENT MEASURING THE VALUE OF A MAP

A somewhat different application of PROSPECTOR was concerned with measuring

quantitively the economic value of a geological map (Shapiro & Watson 1979).

The USGS expends great time, effort, and money in creating maps detailing the

geological characteristics of various geographical districts. The question naturally

arises as to whether the benefits obtained from using such maps justify their cost.

In an attempt to answer the question quantitatively, the USGS conducted an

experiment using a porphyry copper model of the PROSPECTOR system.
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Ten sites were selected, five of which were known to contain a deposit
matching the characteristics of the specified model; the remaining five sites were
known to be barren. Three different maps were available for each site: one at a
scale of 1:24,000; another at 1:250,000; and a third at a scale of 1:1,000,000.
Two geologists were selected to provide input data to PROSPECTOR about each
test site, based only on information contained on the corresponding maps they
were provided. For each site, the designated geologist completed three copies of
the PROSPECTOR questionnaire for the copper model, each copy corresponding
to a different scale map. Using the completed questionnaire as input, PROS-
PECTOR assigned three sets of scores to each test site, one for each scale map.

These results were used to determine how well PROSPECTOR distinguished
the sites containing deposits from the barren sites, as measured by the Spearman
Rank Correlation Coefficient. In the case of the 1:24,000 maps, PROSPECTOR's
predictions obtained a correlation of 0.73 (on a —1 to 1 scale), which was
statistically significant at the 5% confidence level (even though the sample size
was small). Statistical significance was not obtained in the case of the smaller
scale maps, indicating either that these maps contain insufficient information to
evaluate the test regions, or alternatively, that the sample size was too small to
obtain significance in these cases. To distinguish the latter two possibilities, an
extension of this study to an additional 20 sites is now in progress.

6. OTHER APPLICATIONS IN PROGRESS

Since the completion of the NURE pilot study, the U.S. Geological Survey and
the Department of Energy have funded additional evaluations similar to the
NURE and Alaska tests. One project will extend the NURE pilot study to
additonal regions selected by DoE. Mother will score the relative merits of a
dozen areas in the San Jaun Basin, New Mexico, for possible occurrence of
epigenetic carbonaceous sandstone uranium deposits, for which a PROSPECTOR
model (called ECSU) is available.

PROSPECTOR has also made its first prediction about the location of an as
yet undiscovered ore body. For this purpose we used a drilling site selection
model developed for porphyry molybdenum deposits. Whereas the prospect-scale
and regional-scale models discussed previously are intended to provide an overall
evaluation of a prospect-sized property or a larger region, PROSPECTOR's
drilling site selection models are intended to pinpoint exact spots where an ore
body will be found. Toward this end, an area is overlaid with a grid of cells
(typically 128 X 128), so that each cell represents an area about 30 meters square.
Using graphic input data obtained by digitizing features from a geological map,
PROSPECTOR evaluates each cell in the grid, using an efficient network compiler
to speed the evaluation process (Duda et al. 1978, Konolige 1979). Each of the
16 384 resulting cell scores is colour-coded, and then the entire map is displayed
on a colour graphic display, so that the brightest areas are most favourable for
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drilling. To test their accuracy, the drilling site selection models have been

subjected to a number of a posteriori tests, using areas where ore deposits have

already been discovered and mined, but using maps from an early stage of

exploration for the purpose of the test. In these tests of a porphyry copper
drilling site selection model (Duda etal. 1978), PROSPECTOR's predictions agreed
very closely with the outline of the known orebody. Since mining companies
sometimes drill dozens or hundreds of holes for every commercially viable
deposit discovered, the potential of accurate 'first-hole' predictions is very
great. Accordingly, we were encouraged to develop another drilling-site selection

model, for porphyry molybdenum deposits (Duda, 1980). This model has been
used to predict the possible occurrence of a deposit in a relatively unexplored

area of the Mount Tolman region in Washington State. These results which were

published in Duda 1980, are currently being evaluated as further exploration

data are becoming available.
Another type of evaluation of PROSPECTOR is now being planned, namely

a 'peer review' workshop. Each of the experts who designed PROSPECTOR
models will present his model to a group of geologists who are also knowledgeable
about that type of deposit. The object is to elicit comments and criticisms (and
perhaps a consensus) among the geologists present about the model under
discussion. While it is rather common for geologists to disagree among each other
to certain degrees, an advantage of the PROSPECTOR approach is that the
geologists attending the upcoming workshop will be focussing on very precisely
stated issues (e.g., this factor in the model or that rule strength value). Our hope

is that the PROSPECTOR methodology will contribute to the increased codifi-
cation of economic geology.

7. DISCUSSION

We have measured PROSPECTOR's expertise explicitly and found that its
detailed conclusions match those of the expert who designed it, to within about
7% on a 10-point certainty scale used as a basis for comparison. Having so validated
the models, we presented results of several applications to practical tasks for the

USGS and DoE. In so doing, we demonstrated in particular how the PROSPECTOR
approach deals effectively with the variabilities and uncertainties inherent in

the task of resource assessment (i.e., by sensitivity analysis).
This work illustrates that expert systems intended for actual practical use

must accommodate the special characteristics of the domain of expertise. In the

case of economic geology, it is not rare for field geologists to disagree to some

extent about their field observations at a given site. Accordingly, the use of

various sorts of sensitivity analysis is stressed in PROSPECTOR to bound the

impact of such disagreements and to isolate their sources. In so doing, we provide

geologists with new quantitative techniques by which to address an important

issue thus adding to the attractiveness of PROSPECTOR as a working tool.

322



GASCIINIG

Other domains of expertise will have their own peculiarities, which must be
accommodated by designers of expert systems for those domains. A more
mundane, but nevertheless practically important, example concerns the use of a
questionnaire as a medium for obtaining input data to PROSPECTOR from
geologists. Most geologists have little or no experience with computers; further-
more, acess to a central computer from a remote site may be problematic in
practice. On the other hand, geologists seem to be quite comfortable with
questionnaires. Our point is simply that issues ancillary to artificial intelligence
usually have to be addressed to ensure the practical success of knowledge-based
Systems.
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