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Abstract

Data mining is the search for relationships and global patterns that exist in large databases.
One of the main problems for data mining is that the number of possible relationshipsis very
large, thus prohibiting the search for the correct ones by validating each of them. Hence we
need intelligent data mine tools, as taken from the domain of machine learning.

In this paper we present a new inductive machine learning algorithm called ILA. The system
generates rules in canonical form from a set of examples. We also describe application of
ILA to arange of data sets with different number of attributes and classes. The results
obtained show that ILA is more general and robust than most other algorithms for inductive
learning. Most of the time, the worst case of ILA appears to be comparable to the best case
of some well-known algorithms such as AQ and ID3, if not better.

Keywords: Machine Learning, Induction, Knowledge Discovery, Inductive Learning, Symbolic
Learning Algorithm.

1. Introduction

Using data mining or knowledge discovery techniques, automated tools can be
designed for learning rules from databases. In the recent past, the application of data
mining[Frawley, Piatetsky-Shapiro, and Matheus, 1991] has acquired considerable
significance. Researchers have developed and applied machine learning techniques to
automatically acquire knowledge from large databases and to learn rules for expert
systems. The domains of data mining and machine learning intersect as they both deal
with  extracting interesting and previousdy unknown knowledge from
databases|Deogun et al., 1997]. [Holsheimer and Siebes, 1994] state that, in fact,
when adatabase is used as atraining set, the learning processis called data mining.



One of the gproades to inductive madchine leaning that is often used is to form a
decision tree from a set of training examples. Dedsion treebased approaches to
clasgficaion leaning are typicdly preferred becaise they are dficient and, thus, can
ded with alarge number of training examples. However, the dedsiontree gproaces
do nad aways produce the most general production rules. Therefore, there ae many
algorithms which do na employ dedsion trees, for instance, AQ family of algorithms
that utilize digunction o feaures values covering positive examplegMichalski,
1983. Furthermore severa others use multiple leaning algorithms within a single
leaning system as in FCLS system which combines rules with spedfic examplesin a
best-match framework[Zhang, 199Q.

So far the best known algorithm which takes a set of examples as inpu and poduces
a dedsion tree which is consistent with examples has been Quinlan’s ID3
algorithm[Quinlan, 1983. This was derived from the Concept Learning System(CLS)
algorithm described by [Hunt, Maria & Stone, 1964. ID3 has two new feaures that
improved the dgorithm. First an information-theoretic splitti ng heuristic was used to
enable small and efficient dedsion trees to be nstructed. Secnd, the incorporation
of windowing process that enabled the dgorithm to cope with large training
setg Thornton, 1992. With these alvantages ID3 has bewmme a mainstrean of
symbdlic leaning approaches and a number of derivatives are propcsed by many
reseachers. For example, ID4 which incrementaly builds a dedsion tree based on
individually observed instances by maintaining positive and regative instance ouns
of every attribute that could be a test attribute[Schlimmer and Fisher, 1984,
ASSSTANT 86 which handesinduction bas caused by mutual information-theoretic
measure that filters out irrelevant feaures [Cestnik, Konorenko, and Bratko, 1987,
ID5 which provides an incremental method for building ID3 type dedsion trees but
differs from 1D4 in its method for repladng the test attribute [Utgoff, 198§, GID3
and GID3* which daes not branch onead value of the dhosen attribute to reduce the
unrecessary sub-division o data [Irani, Cheng, Fayyad, and Qian, 1993, and C4.5
which handles uncetain data [Quinlan, 1993 with the epense of increasing
classficdion error rate.

ID3 isatop-down, nonkadctradking dedsiontree agorithm. One of the problems with
ID3 is that the dedsion tree produced owerfits the training examples because it
performs a stepwise splitti ng that attempts to ogimize a ead individual split, rather
than on an owerall basis [McKeg 1999. This leads to dedsion trees that are too
spedfic becaise they used unrecessary or irrelevant condtions. Hence this aff eds the
ability to classfy unknovn examples or examples with incomplete dtributes.
Typicdly, to overcome overfit in dedsion trees, the treeis pruned [Breiman et al.,
1984. Though this method may not work adequately for an inconclusive data set
which require probabili stic rather than categoricd clasdficaion. [Uthurusamy et a.,
1997 proposed an agorithm which improves on ID3 to make it applicable to
inconclusive data sets.  Ancther problem with ID3 relates to the fad that for
applications invalving a large number of training examples which cannat be kept in
computer’s main memory at once The dgorithm can work with a “representative”
sample from the training set, cdled windowing, which however, canna guaranteeto
yield the same dedsion tree & would be obtained from the complete set of training



examples. In this case the dedsion tree would be unable to classfy all examples
corredly [Carter and Catlett, 1987.

AQ is anather well-known inductive leaning agorithm. The original AQ does not
hand e uncertainty very well. Existing implementations, such as AQ11/Michalski and
Larson, 1978, AQ19Michalski et a., 198 hande noise with pre and pat-
processng techniques. The basic AQ algorithm however, heavily depends on spedfic
training examples during search(the dgorithm adually employs a beam seach). The
AQ agorithm when generating a conjunction d attribute value @ndtions (cdled a
complex), aso performs a genera-to-spedfic seach for the best complex. The
algorithm only considers gedalizations that exclude some particular covered
negative example from the complex while ensuring some particular ‘seed’ positive
example remains covered, iterating until all negative examples are excluded. As a
result , AQ seaches only the spaceof complexes that are completely consistent with
the data.

CN2 agorithm[Clark and Niblett, 1989, which is an adaptation d the AQ algorithm,
retains the same heuristic search method d the AQ algorithm but on the other hand,
removes its dependence on spedfic examples during seach and also extends AQ’s
seach spaceto include rules that do nd perform perfedly on the training data. Both
AQ and CN2 are rule induwtion systems that are regarded as non cedsion tree
approades.

Other algorithms include OC1[Murthy, Kasif, and Salzberg, 1994 which is a system
for induction d oblique dedsion trees siitable for domains where dtributes have
numeric values, and RULES[Pham and Aksoy, 1993 which is a rule induction
algorithm with an ability to classfy unseen examples. The disadvantage of RULES
liesin the increased number of rules generated to hand e such data.

We present a produwction rule induction system cdled ILA(Indwctive Leaning
Algorithm) which produces IF-THEN rules diredly from a set of training examplesin
a general-to-spedfic way (i.e. starting off with the most general rule possble and
produwcing spedfic rules whenever it is deened necessry). ILA diminates all
unrecessary and irrelevant condtions from the extraded rules and therefore its rules
are more simple and general than those obtained from ID3 and AQ. ILA aso produces
rules fewer in number than ID3 and AQ most of the time. The generality of rules
increases the dasgficaion cgpability of ILA. A rule becomes more general as the
number of condtions on its IF-part becomes fewer. A general rule dso help in
classfying incomplete examples in which ore or more dtributes may be unknown.
They aso embody the general patterns within the database. The rules can be used to
interpret and unddrstand the adive mecdhanisms underlying the database.

We describe the gplicaion d ILA to a range of problems demonstrating the
performance of the dgorithm on three domains from UCI repasitory’. The results of
ILA are compared to those of 1D3 and AQ.

YUniversity of California Irvine Repository of Machine Learning Databases and Domain Theories via
anonymous ftp to charlotte.ics.uci.edu : pub/machine-learning-databases.



2. Thelnductive Learning Algorithm(ILA)

Now that we have reviewed ID3 and AQ we can turn to ILA, a new inductive
algorithm for generating a set of classification rules for a collection of training
examples. The algorithm works in an iterative fashion, each iteration searching for a
rule that covers alarge number of training examples of asingle class. Having found a
rule, ILA removes those examples it covers from the training set by marking them and
appends arule at the end of itsrule set. In other words our algorithm works on arules-
per-class basis. For each class, rules are induced to separate examples in that class
from examples in al the remaining classes. This produces an ordered list of rules
rather than a decision tree. The advantages of the algorithm can be stated as follows:

» Therules are in a suitable form for data exploration; namely a description of each
classin the simplest way that enablesit to be distinguished from the other classes.

e The rule set is ordered in a more modular fashion which enables to focus on a
single rule at a time. Decision trees are hard to interpret, particularly when the
number of nodesis large.

Feature space selection in ILA is stepwise forward. ILA aso prunes any unnecessary
conditions from the rules.

ILA isquite unlike ID3 or AQ in many respects. The mgjor differenceisthat ILA does
not employ an information theoretic approach and concentrates on finding only
relevant values of attributes, while ID3 is concerned with finding the attribute which
is most relevant overall, even though some values of that attribute may be irrelevant.
Also ID3 divides a training set into homogeneous subsets without reference to the
class of the subset, ILA must identify each specific class.

ILA to be described in section 2.2 starts processing the training data by dividing the
example set into sub-tables for each different class attribute value. Afterwards it
makes comparisons between values of an attribute among all sub-tables and counts
their number of occurrences. ILA is designed for handling discrete and symbolic
atribute values in an attempt to overcome the attribute selection problem.
Continuous-valued attributes can be discretized during decision tree or rule generation
by partitioning their ranges using cut points[Fayyad and Irani, 1994]. But most of the
time the motivation for discretization is to improve the learning speed of the
algorithm when continuous(numeric) attributes are encountered[Ching, Wong and
Chan, 1995].

Starting off with the maximum number of occurrence combinations it then
immediately begins generating rules until it marks all rows of a sub-table classified.
ILA then repeats this process for all values of each attribute of each sub-table. Finally,
all possible IF-THEN rules are derived when there are no unmarked rows left for
processing.



2.1 General Requirements

1. The examples areto be listed in a table where each row corresponds to an example
and each column contains attribute values.

2. A set of mtraining examples, each example composed of k attributes and a class
attribute with n possible decisions.

3. Aruleset, R, with aninitial value of .

4. All rowsinthetable areinitially unmarked.

2.2 Thelnductive Learning Algorithm(ILA)

Stepl: Partition the table which contains m examples into n sub-tables. One table for
each possible value of the class attribute.

(* steps 2 through 8 are repeated for each sub-table *)
Step2: Initialize attribute combination count j asj = 1.

Step3: For the sub-table under consideration, divide the attribute list into distinct
combinations, each combination with | distinct attributes.

Step4: For each combination of attributes, count the number of occurrences of
attribute values that appear under the same combination of attributes in unmarked
rows of the sub-table under consideration but at the same time that should not appear
under the same combination of attributes of other sub-tables. Call the first
combination with the maximum number of occurrences as max-combination.

Step5S: If max-combination = ¢, increasej by 1 and go to Step 3.

Step6: Mark al rows of the sub-table under consideration, in which the values of
max-combination appear, as classified.

Step7: Add a rule to R whose left hand side comprise attribute names of max-
combination with their values separated by AND operator(s) and its right hand side
contains the decision attribute val ue associated with the sub-table.

Step8: If all rows are marked as classified, then move on to process another sub-table
and go to Step 2. Otherwise(i.e., if there are still unmarked rows) go to Step 4. If no
sub-tables are available, exit with the set of rules obtained so far.

3. A Description of the Inductive L earning Algorithm



ILA is arather simple dgorithm for extrading production rules from a olledion o
examples. An example is described in terms of afixed set of attributes, ead with its
own set of posshle values. In describing ILA we shal make use of three diff erent
training example sets(i.e. ojed, weaher and season clasgficaions).

As an illustration d the operation d ILA, let us consider the training set for objeda
clasgficaion given in Table 1, consisting of seven examples (i.e. m=7) with three
attributes (k=3) and ore dedsion(clas9 attribute with two possble values, {yes, no},
(n=2). In this example, “Size”, “Color” and “Shape’ are atributes with sets of
possble values { small, medium, large}, { red, due, green}, and {brick, wedge, sphere,
pill ar} respedively.

TABLE 1. Objed Classficaion Training Set[ Thornton, 1997.

Example no. Size Color Shape Dedsion
1 medium blue brick yes
2 small red wedge no
3 small red sphere yes
4 large red wedge no
5 large green pill ar yes
6 large red pill ar no
7 large green sphere yes

Since n is two, the first step o the dgorithm generates two sub-tables which are
shownin Table 2.

TABLE 2. Sub-Tables of The Training Set Partitioned According to Dedsion Classs.

Sub-Table 1
Example no. Size Color Shape Decision
old new
1 1 medium blue brick yes
3 2 small red sphere yes
5 3 large green pill ar yes
7 4 large green sphere yes
Sub-Table 2
Example no. Size Color Shape Decision
old new
2 1 small red wedge no
4 2 large red wedge no
6 3 large red pill ar no

Applying the secondstep of the dgorithm, we wnsider the first sub-tablein Table 2:
For j=1, the list of attribute combinations comprises: {size}, { color}, and {shape}.

For the combination {size} the dtribute value “medium” appeas in sub-table 1 bu
not in sub-table 2, so the value of max-combination keames “medium”. Since other
avail able atribute values “small” and “large” appea in bah sub-table 1 and sub-table
2 they are not considered at this dep. The occurrence of {size} attribute value
“medium” is noted as one times and rext combination is evaluated with max-
combination set to “green”. For combination {color} we have “blue” with an




occurrence of one times and “green” with an occurrence of two times. Continuing
further with the combination {shape}, we have “brick” with ore occurrence and
“gphere” with two occurrences. At the end d step 4, we have {color} attribute value
“green” and {shape} attribute value “sphere” marked with maximum number of
occurrences. Here ather of the dtribute values can be seleded, because both of them
can classfy the same number of training examples. The dgorithm always sleds the
first one(i.e. “green” in this case) by default, and this will make max-combination to
keep its current value of “green”. Rows 3 and 4 are marked as classfied in sub-table
1, since the value of max-combination is repeaed in these two rows, the foll owing
production rule(Rule 1) is extraded:

Rulel
IF color isgreen THEN the dedsionisyes.

Now, ILA algorithm repedas gep 4 through step 8 onthe rest of the unmarked
examples in sub-table 1(i.e. rows 1 and 2. By applying these steps again we have
“medium” attribute value of {size}, “blue” atribute value of {color}, “brick” and
“sphere” atribute values of { shape} occurring once Sincethe number of occurrences
are the same, the dgorithm applies the default rule and seleds the first one
considered(i.e. “medium” attribute value of {size}). Then the following rule(Rule 2)
isadded to therule set:

Rule2?
IF sizeis medium THEN the dedsionisyes.

The first row in sub-table 1 is marked as classfied and steps 4 through 8 are gplied
again on the remaining row(i.e. the semnd row). Here we have “sphere” atribute
value of { shape} ocaurring once, so the third rule is extraded:

Rule3
IF shapeis phere THEN the dedsionisyes.

By marking the secondrow as classfied al of the rowsin sub-table 1 are now marked
as clasdfied and we proceal on to sub-table 2. The “wedge” atribute value of
{'shape} occaurs twicein the first and second rows in sub-table 2. So, these two rows
are marked as classfied and Rule 4 is appended to therule li st.

Rule4
IF shape is wedge THEN the dedsionisno.

In the remaining row in sub-table 2(i.e. the third row) we have { size} attribute with a
value of “large” that appeas also in sub-table 1. So acwrding to the dgorithm this
canna be cnsidered. The same gpliesto “red” value of {color} and “pill ar” value of
{shape} attributes. In this case, ILA increases | by 1, and generates 2-attribute
combinations, {size and color}, { size and shape}, and {color and shape}. The first
and third combinations satisfy the condtions as they bath appea in sub-table 2 bu
not in sub-table 1 for the same dtributes. The “large pill ar” value of {size and shape}
combination is ignored because it alrealy appeas in sub-table 1. According to this,
we can choose ather the first or the third combination bu the default rule dlows usto



seled the first one. The following rule(Rule 5) is extraded and the third row in sub-
table 2 is marked as classfied:

Ruleb
IF sizeislarge AND color isred THEN the dedsionisno.

Now, since dl of the rows in sub-table 2 are marked as classfied and no aher sub-
table is avail able, the dgorithm terminates.

3.1 Comparison of ILA and ID3

Severa distinctions between ILA and ID3 are pointed ou ealier in Sedion 2. For
comparison pupaoses, the rules resulting from applying ID3 onthe same training set
and the ones produced by ILA are presented in Table 3.

TABLE 3. A Comparison Between Rules Generated by ID3 and ILA.

Algorithm | Rule No. Rule
ID3 1 IF color=green AND shape=pill ar THEN yes
ILA IF color=green THEN yes
ID3 2 IF shape=brick THEN yes
ILA IF sizeemedium THEN yes
ID3 3 IF shape=sphere THEN yes
ILA I F shape=sphere THEN yes
ID3 4 IF shape=wedge THEN no
ILA IF shape=wedge THEN no
ID3 5 IF color=red AND shape=pill ar THEN no
ILA IF size=large AND color=red THEN no

It is evident from Table 3 that the two agorithms generate the same number of rules
but Rule 1 extraded by ILA is smpler than the same rule generated by ID3 because
the latter has an unrecessary condtion(i.e. shape =pill ar). Clealy rules 2, and 5are
also dfferent in bah sets of rules but with the same level of complexity. However,
ILA could generate these same two rules, as for example, attribute value “brick” was
ore of the choices. But we gain nahing if we dange this choice since in bah
algorithms the two rules have the same level of spedficity and classfy the respedive
examples corredly.

Let us consider ancther training set from [Quinlan, 84 in Table 4:

TABLE 4. Wedher Training Examples.

Example Outlook Temperature | Humidity Windy Class
1 sunry hot high fase N
2 sunry hot high true N
3 overcast hot high fase P
4 rain mild high fase P
5 rain coal normal fase P
6 rain coal normal true N
7 overcast coadl normal true P
8 sunry mild high fase N
9 sunry coadl normal fase P
10 rain mild normal fase P




11 sunny mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 rain mild high true N

where P = Positive and N = Negative.

Applying ILA on the training set given in Table 4 we obtain the following rules:

Rulel: IF outlook isovercast THEN the decision is Positive.

Rule2: IF outlook is sunny AND humidity is high THEN the decision is Negative.
Rule3: IF outlook israin AND windy istrue THEN the decision is Negative.

Ruled: IF outlook israin AND windy isfalse THEN the decision is Positive.

Rule5: IF outlook is sunny AND humidity isnormal THEN the decision is Positive.

For this example, these are the same rules generated by ID3. In this case, extracted
rules do not contain any unnecessary conditions. This is actually the worst case of
ILA. The worst case of ILA happens when it generates rules that do not contain
unnecessary conditions to eliminate.

To compare ILA with a much recent rule extraction system called RULES[Pham and

Aksoy, 95] and also with ID3 let us consider the training example set for classifying
the seasons given in Table 5.

TABLE 5. The Training Set for Season Classification Problem[Pham and Aksoy, 95].

Example Weather Trees Temperature Season(Class)
1 rainy yellow average autumn
2 rainy leafless low winter
3 snowy leafless low winter
4 sunny leafless low winter
5 rainy leafless average autumn
6 rainy green high summer
7 rainy green average spring
8 sunny green average spring
9 sunny green high summer
10 sunny yellow average autumn
11 Snowy green low winter

The rules resulting from applying ID3 and RULES on the same training set and the
ones produced by ILA are presented in Table 6. Again ILA generates the same
number of rules but one rule (Rule 3) being ssmpler than that has been generated by




ID3. The unrecessary condtion that ID3 generated is “temperature is average”, which
is eliminated as described in Table 6.

On the other hand we note that RULES generates sven rules from the same training

set, the first five of them being the same & the rules generated by ILA while rule 6
andrule 7 are generated neither by ID3 na by ILA.

TABLE 6. A Comparison Between Rules Generated by ID3, RULES and ILA.

Algorithm Rule Rule
No.
ID3 1 |F temperature = low THEN winter
RULES |F temperature = low THEN winter
ILA I F temperature = low THEN winter
ID3 2 I F temperature = high THEN summer
RULES I F temperature = high THEN summer
ILA I F temperature = high THEN summer
ID3 3 IF trees = yellow AND temperature = average THEN autumn
RULES IF trees = yellow THEN autumn
ILA IF trees = yellow THEN autumn
ID3 4 IF trees = ledlessAND temperature = average THEN autumn
RULES IF trees = ledlessAND temperature = average THEN autumn
ILA IF trees = ledlessAND temperature = average THEN autumn
ID3 5 IF trees = green AND temperature = average THEN spring
RULES IF trees = green AND temperature = average THEN spring
ILA IF trees = green AND temperature = average THEN spring
ID3 6 O
RULES IF weaher = snowy THEN winter
ILA 0
ID3 7 O
RULES IF weaher = sunry AND trees = ledlessTHEN winter
ILA 0

4. Evaluation of Inductive Learning Algorithm(ILA)

The evaluation d leaning systemsis a amplex task. One way it can be sssesedisin
terms of its performance on spedfic tasks which are assumed to be representative of
the range of tasks which the system is intended to perform[Cameron-Jones and
Quinlan, 1994.

For evaluation pupaoses of ILA we have mainly used two parameters: number of rules
generated and average number of condtions. Number of rules has been included as an
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evauation parameter because the am hereisto producethe minimum number of rules
as posshle that classfy the examples in the training set succesully. But a good
algorithm shoud produce rules that not only classfy the caes in the training set but
also clasdfy the unseen examples. So, the send prameter, that is the average
number of condtions, helps to give indicaion whether the dgorithm can classfy
more unsean examples or nat. It can be eaily redized that a rule with fewer number
of condtions can classfy more examples, thus making the average number of
conditions a suitable parameter for the assessment of induction algorithms.

ILA extrads rulesin canonicd form, i.e. in the most general and simple form. Thisis
because ILA eliminates all unnecessary condtions from the rules and generates the
minimum number of rules that some other systems fail to produce, such as RULES(cf.
Table 6). The generality of rules extraded increases the dassficaion cgpability of an
algorithm. A rule beaomes more general as the number of condtions on its LHS
bewmes fewer, in aher words, as the number of attributes becomes fewer. A general
rule dso help in classfying incomplete examples in which ore or more dtributes are
unknown. For example in the Season Classficaion Problem, if an unknavn example
that has an attribute-value pair “Trees are yellow” but has no value for { Temperature}
will be dasdfied corredly by ILA, bu not by ID3 even though bah algorithms
produce the same number of rules as een in Table 7. Using the propased algorithm
the oppatunity to classfy unknovn examples(examples nat listed in the training set)
therefore, becomes very high.

In this dion we first describe the charaderistics of training sets used in evaluating
ILA against ID3 and AQ agorithms. Next we outline experiments followed by a
discusson d evauation parameters and a summary of results obtained. Finaly,
elimination d unrecessary condtions and classficaion d unseen examples are
described.

4.1 Training Sets
We used threedifferent training sets, namely Balloors, Balance and Tic-tactoe in ou
experiments with ILA.

Table 7 summarizes the daraderistics of the three different domains used in the
experiments. We have obtained those training sets from the University of Caifornia
Irvine Repository of Madine Leaning Databases and Domain Theories via
anonymous ftp to charlotte.ics.uci.edu : pulmachine-leaning-databases.

TABLE 7. Description of the Domains.

Domain Balloons Balance Tic-tac-toe
Characteristic
Number of attributes 4+1 4+1 9+1
Number of examples 16 625 958
Average Values per attribute 2 5 3
Number of Class Values 2 3 2
Distribution of Examples 1 25%areT 1. 46.08% are L 1. 653% areP
Among Class Values 2. 5% areF 2.07.84% are B 2. 347% areN
3.46.08% are R
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4.2 Experiments

The agorithm outlined in Section 2 has been embodied in a new rule induction
system which takes as input a set of training examples entered as afile of ordered sets
of attribute values, each example being terminated by a decision attribute. The results
are output as individua rules for each of the classifications listed in terms of the
described attributes.

The results of applying ILA on these training sets are compared with three well-
known agorithms in inductive learning, namely 1D3, and AQ. We conducted two
different sets of experiments on the ILA. In the first experiment set performance of
ILA isassessed using two criteria-number of rules generated by the algorithm and the
average number of conditions on the IF-parts of rules. While in the second experiment
set we specifically measured relative performances of ID3, AQ, and ILA on
partitioned data to observe classification capability of the algorithms on unseen
example data.

4.2.1 Discussion

The number of rulesis considered as an evaluation parameter because the main am is
to produce the minimum number of rules as possible that can classify all of the
examples in the training set. The second parameter that has great significance in
the evaluation process of inductive learning systems is the capability of the system to
classify as much unseen examples as possible. As discussed in section 3.1, the
average number of conditions can be used for this purpose successfully since a system
that produces fewer number of conditions can classify more examples

TABLE 8. Summary of the Results Obtained.

Training Set | Algorithm No. of Average no.
Rules of
Conditions
ID3 3 1.67
Balloons AQ 3 1.33
ILA 3 1.33
ID3 401 3.85
Balance AQ 312 3.53
ILA 303 341
ID3 218 5.78
Tic-tac-toe AQ 86 4.92
ILA 32 35

Table 8 shows the number of rules and average number of conditions in the resulting
rules for the four algorithms for each training set. It is clear that ILA can produce less
number of rules and less number of conditions on the IF-part of the rules than those

12



generated by ID3 and AQ algorithms. So it is expected that ILA classifies more
unseen examples than above mentioned algorithms, as we shall discuss later.

A closer look at the figures in Table 8 shows that the results are almost the same for
the smallest data set tested, namely balloons. However, it is noted that as the training
sets get larger, ILA gives better results for both parameters in comparison to 1D3 and
AQ agorithms.

4.2.2 Elimination of Unnecessary Conditions

From the previous discussion it is clear that ID3 and AQ algorithms produce rules that
contain unnecessary conditions. ILA, on the other hand, eliminates such conditions. It
is adso clear from Table 8 that ILA produces rules which are significantly less in
number than those produced by these algorithms. In order to see the reason, let us
consider Tic-tac-toe training set, for which ID3 produces 218 rules while ILA produce
only 32 rules. Let us consider the following set of rules produced by ID3:

IFP,=X& P3=x& Ps=x & P;=x & Py=0 THEN Classis Positive
IFP,=0& P3=X & Ps=x & P;=x & Py=Xx THEN Classis Positive
IFP,=0& P3=X& Ps=x & P;=x & Py=0 THEN Classis Positive
IFP,=X& P3=x& Ps=x & P;=x & Py=b THEN Classis Positive
IFPL,=b& P3=X& Ps=Xx & Ps=x & P;=x & Py=0 THEN Classis Positive

All of these rules are correct and classify the examplesin the training set correctly, but
all of them contain unnecessary conditions. ILA eliminates these conditions and
produces only the following rule instead of five:

IFP;=x & Ps=x & P;=x THEN Classis Positive

In this case, ID3 produced 5 rules with 5.2 as the average number of conditions, while
ILA produced only one rule with 3 conditions which leads to low error rates for
classifying unseen examples as shown in Table 9. In fact, this is the reason why ILA
produces fewer number of rules with fewer average number of conditionsin the rules.
This particular rule given above can classify 90 out of 958 examples from tic-tac-toe
data base while the five rules produced by ID3 can classify 73 examples. From above
discussion we can assume that ID3 is aso affected by small junction problem. As
each conjunct supports fewer training examples it has a rather poor predictive
accuracy in unseen examples to be shown later in Section 4.2.3.

Similar situations can easily be found in rules produced by AQ and ID3 agorithms
especially for large training data sets. It is clear that when ILA eliminates unnecessary
conditions from the rules, the number of rules and average number of conditions
decrease significantly. This situation illustrates the difference in the values of these
two parameters between ILA on one side and the other algorithms on the other side.

4.2.3 Classification of Unseen Examples
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Concept learning systems often describe a decision as a digunction or conjunction of
conditions(attributes). Recently it is noted that small junctions(diguncts), i.e., those
supported by few training examples, typically have poor predictive accuracy in unseen
examples. Severa approaches are proposed to overcome this problem, for example by
[Ali and Pazzani, 1993]. All of the algorithms tested were affected by the small
junction problem with varying degrees, ID3 being the most affected one while ILA
was the least affected algorithm.

In order to test the three algorithms for the ability of classifying unseen examples,
each training set has been divided into two sets, the first set containing a sub set of the
training examples on which the algorithms are run, while the second set contains rest
of the examples which are selected randomly to form the unseen examples on which
the generated rules from all algorithms are tested.

Tests are conducted on different sizes of data as follows:

Partition | : about 2/3 of the original set is kept as the training set and 1/3 as the set of
unseen examples.

Partition 11: about 1/2 of the original set is kept as the training set and 1/2 as the set of
unseen examples.

Partition I11: about 1/3 of the original set is kept as the training set and 2/3 as the set of
unseen examples.

To enhance the generality of the results, these tests have been conducted on the above
cases for five times, each time with different (randomly selected) examples in both
sets that contain the training examples and the unseen examples as well.

Table 9 lists the average number of rules generated from the five tests of applying the
four agorithms on the three different training sets for the cases mentioned above.

Table 9. Number of Rules Generated.

Training Set | Partition | 1D3 AQ | ILA

Balloons I 3 3 3

1 3 3 3

Il 4 4 2
Balance I 212 178 160

I 164 134 121
"l 139 107 99

Tic-tac-toe I 129 53 18
] 116 57 28
1 74 38 27

From Table 9, itis clear that ILA produces the fewest number of rules compared with
ID3 and AQ. For the small data set, Balloons, the results are almost the same with
only a small difference among them. However, as the size of the training sets
increases, the difference between ILA and other agorithms becomes obvious, as in
the case of Balance and Tic-tac-toe sets.
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Table 10, onthe other hand, shows the powerful aspeds of ILA. It shows the average
of error rates of applying the four algorithms on the training sets of the same caesin
Table 9, aso for the five tests. It is apparent that the aror rates of ILA is the best
among al compared with ID3 and AQ

Table 10. Error Percentages for Classfying Unseen Examples.

Training Set | Partition ID3 AQ ILA

Balloons I 0.0% 0.0% | 0.0%
Il 0.0% 0.0 0.0
" 30.860 | 30.80 | 30.8%

Balance I 64.80 | 41.56 | 40.20
Il 53.060 | 40.846 | 34.6%
1" 54700 | 51.1% | 47.7%6

Tic-tac-toe I 29.%0 | 13.8% | 4.1%
Il 31.26 | 18.846 | 6.8%
1" 42.56 | 4.4% 2.8%

5. Conclusions

ILA isasupervised, smple but powerful inductive dgorithm for classfying symbalic
data. In particular it deds with discrete and symbdlic dtribute values. The results
obtained so far indicate that ILA is comparable to ather well-known algorithms. In
this paper, ILA has been applied to several domains to derive IF-THEN rules from
training examples. The results obtained are compared with results obtained from
applying two well-known algorithms in the domain, ramely ID3 and AQ on the same
training sets. It has been shown that in al of the tests the generality of the extraded
rulesis acieved. Thisis dueto the fad that ILA eliminates the unrecessary condtion
problem. ILA’s acarracy of rules induced from an urseen training set are better than
the acarracy of adedsiontreeinduced by ID3 and rules generated by AQ.

As a further reseach, two new improvements to the dgorithm are being added. The
first is the aility to ded with nasy and incomplete examples, where some of the
attribute values are wrong or unknowvn. The second improvement is to convert the
algorithm in away to be ale to trea continuous attribute values.
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