q:

1Y

oLy]

Reports of Machine Learning and Inference Laboratory, MLI 91-11, George Mason University, December 1991.

THE AQ FAMILY OF LEARNING PROGRAMS:
A Review of Recent Developments
and an Exemplary Application

R.S. Michalski, K. Kaufman and J. Wnek
Center for Artificial Intelligence
4400 University Dr.

Fairfax, VA 22030
George Mason University
{ michalski kaufman,wnek } @aic.gmu.edu

Abstract

This paper briefly reviews the family of AQ inductive learning programs, and describes recent new
additions to the AQ family of inductive learning programs, such as AQ14-NT, AQ15-GA, AQl5-
FCLS, AQ17-DCL, AQI7-HCI and AQ17-1. The AQ family includes a long series of programs
based on the AQ general covering algorithm. The first members of the family were developed in
the early seventics. The most important new ideas in the development of the series include
powerful methods for data-driven (AQ17-DCI) and hypothesis-driven (AQ17-HCI) constructive
induction, a method for handling noise in the input data (AQ14-NT), an integration of the AQ
method with a genetic algorithm (AQ15-GA), and a method that combines the logic-based
approach with some aspects of neural net type learning (AQ15-FCLS). The presented programs
are illustrated by an application to the so-called MONKSs' problems, and their performance is
compared with several other leaming programs.

1. INTRODUCTION

There have been a number of learing methods and approaches developed for inductive concept
learning from examples. These methods can be divided into symbolic and subsymbolic, based on
whether or not their representations of attributes and concepts consist of simple symbolic structures
(e.g. logical descriptions) that can be related directly to the objects they represent. Typical
symbolic representations include decision trees or rules, while subsymbolic methods include
genetic algorithms and neural networks.

Given the many machine learning programs that liave been developed for the purpose of concept
learning, an important theoretical and practical problem is to determine the areas of best
applicability of the various methods. One of the efforts in this direction was an international
competition in which attendees at the 1991 European Summer School on Machine Learning were
challenged with three problems developed by Thrun and Cheng (Thrun, Mitchell and Cheng,
1991). Given that the School was being held on the grounds of a converted priory, the problems
became known as the “MONKs’ Problems.”

The AQ family of learning programs is a group of symbolic, generally rule-based programs that
use the Star methodology for learning concepts from examples. This paper summarizes the history
of these learning programs, including some programs based on, but not directly related to AQ. We
also describe the results from applying recently developed AQ programs to the MONKs’ problems.
The results of the application of other programs to these problems and a more brief presentation of
the results using the AQ programs were documented by Thrun, Mitchell and Cheng (1991). The
main body of this paper concludes with descriptions of other comparative studies of machine
leamning programs.

2. THE AQ ALGORITHM, ITS HISTORY AND ITS IMPLEMENTATIONS
2.1 AQ Algorithm

All of the programs this paper focuses on use AQ as their basic induction algorithm. A brief
description of the AQ algorithm follows:

1. Select a seed example from the set of training examples for a given decision class.

2. Using the extend against operator (Michalski, 1983), generate a set of alternative most general
rules (a star) that cover the seed example, but do not cover any negative examples of the class.

3. Select the “best” rule from the star according to a multi-criteria rule quality function (called LEF
- the lexicographical evaluation function), and remove the examples covered by this rule from
the set of positive examples yet to be covered. Typical conditions in the LEF include
maximizing the number of events of the decision class covered by the rule, minimizing or
maximizing the number of conditions in the rule, and minimizing the total “cost” of the rule.

4. If this set of examples yet to be covered is not empty, select a new seed from this set and go to
step 2. Otherwise, if another decision class still requires rules to be leamed, return to step 1,
and perform it for this other decision class.

The stars generated in step 2 above are obtained as follows:

1. The initial partial star is either the entire event space or, in the case of incremental learning
(leaming from examples and prior rules), the portion of the event space covered by the
corresponding rule from the rule set to be enhanced.

2. If the partial star covers no negative examples of the concept, we are finished. Otherwise,
repeat steps 3-6 until it no longer covers any negative examples.

3. Select a negative example covered by the partial star.

4, Generate the set of maximally general hypotheses in the event space that cover the seed
example of the concept but not the selected negative example (extension against).

5. Intersect the output of the previous set with the current partial star to generate a new partial
star.

6. Trim the partial star by only retaining the “best” maxstar rules in the star, where maxstar is a
user-defined parameter.

The set of rules generated by AQ will approach, in polynomial time, the simplicity of the optimally
simple rules that could be generated by exhaustive search (an NP-hard undertaking). Michalski
proved that the upper bound on the size of a set of disjoint stars in a given example and event space
is a lower bound on the number of conjunctive rules necessary io completely and consisiently
cover a concept’s examples (Michalski, 1969b). Hence the difference between the size of a cover
generated by AQ and the size of a disjoint set of stars in that example space is the maximum
deviation from minimality of the cover.

2.2. A Brief History of AQ Family of Programs

The AQ algorithm was developed by Michalski (1969). AQVAL/1, also known as AQ7, is an
im ion of AQ that can express its discovered rules in the variable-valued logical language
VL] (Michalski, 1973b; Michalski and Larson, 1975). It learns these rules from a set of examples
in the form of attribute-value tuples and chooses optimal rules based on user-defined criteria.
Rules discovered by AQVAL/1 can be disjoint (i.¢., no example in the event space can be covered
by more than one rule), intersecting (i.¢., events can be covered by multiple rules) or ordered (i.e.,
the rules have a priority order in which the ith rule will take effect only if the previous i-1 rules did
not fire.)

AQ9 (Cuneo, 1975) uses the AQ methodology to optimize existing VL] rules according to some
user-defined criterion. It can, for example, generate discriminant rules that will succinctly
distinguish between classes of events from an input consisting of characteristic rules learned by
AQ7T. Rules learned in this manner will often momusaﬁﬂmandjscmnin%n‘t‘mles]camed
directly from examples. AQ9 can generate rules that are ordered, intersecting or disjoint.

UNICLASS (Stepp, 1979) uses the AQ algorithm to characterize a single class of examples. In
this case, rule generation is not affected by other classes of events, instead an optimal covering is
generated based solely on the user-defined criteria and the input positive examples.

The capability for incremental learmning was added in AQI1 (Larson, 1976; Michalski, 1983) and
later NEWG (Reinke, 1984; Mozetic, 1985). With incremental learning, previuusly generated
(whether by machine leaming or by manual entry) rules can be combined with new examples as
input to the leaming module, which will then refine the rules to account for examples that are not
consistent with the initial knowledge. This process can be repeated over multiple iterations. These
programs also incorporate ATEST, a module that allows rules to be tested for consistency and
completeness and expresses the results of these tests in the form of a confusion matrix (Reinke,
1984). .

AQI5 (Michalski et al, 1986) added a-rules and l-rules, respectively arithmetic and logic-based
background knowledge, into the AQ framework. For example, in a domain which has numerical
attributes length and width, an a-rule may be used to define an attribute area as the product of those
two initial attributes. Or in a domain in which a person’s age and marital status are input attributes,
an l-rulfc can be employed to ensure that all instances of married individuals had ages above a
certain level.

3. RECENT PROGRAMS AND EXTENSIONS TO THE AQ ALGORITHM

The AQ-based g:;:ngrams that were applied to the MONKs' problems are the result of efforts to
further expand the leaming capabilities of AQ in several new directions. The AQ17 programs are
able 1o create new attributes better suited to the input example set (constructive induction). The
DCI and HCI modules provide two different approaches to the task of constructive induction - a
data-driven approach and a hypothesis-driven approach. AQI15-FCLS treats concepts as flexible
entities with a basic core that almost defines them. AQI15-GA combines the abilities of AQ) with
those of genetic algorithms in order to optimize the discovered knowledge. And AQI4-NT is a
version of NEWGEM designed to be able to learn concepts in noisy environments. In Section 3.1,
we describe these programs in further detail, and discuss the tasks for which they are best suited.
We conclude Section 3 with a listing and description of some of the other machine learning
systems that rely heavily on the AQ algorithm.

3.1. Recent AQ Programs
3.1.1. AQ17-DCI (Data-driven constructive induction)

This program, developed by Bloedorn and Michalski, is based on the classical AQ algorithm
(Section 2.1), but it includes an algorithm for constructive induction that generates a number of
new attributes. The quality of any generated attribute is evaluated according to a special Quality
Function for attributes. If the Quality Function exceeds a certain threshold value, then the attribute
is selected. A brief description of the algorithm for data-driven constructive induction (Bloedorn
and Michalski, 1991) is given below. The program works in two phases.

Phase 1.
1. Identify all numeric-valued attributes.

2. Repeat steps 3 through 5 for each possible combination of these attributes, starting with the
pairs of atiribuies, and exiending them if their quality was found acceptable according to the
attribute Quality Function (QF).

3. Repeat steps 4 and 5 for each constructive induction operator. The current operators include
addition, subtraction, multiplication, integer division and logical comparison of attributes
(Bloedorn and Michalski, 1991).

4. Calculate the value resulting from the application of the given constructive induction operator to
the given attribute pair.

5. Evaluate the discriminatory power of this newly constructed attribute using the attribute Quality
Function, described by Bloedorn and Michalski (1991). If the QF for an attribute is above an
assumed threshold, then the attribute is stored, else it is discarded.

6. Repeat steps 4 and 5 for each available global function operator that takes as argument an entire
event (example), and calculate various global functions (properties) of it.

The program has a default list of global functions, but allows the user to modify the list to fit the
problem at hand. The default list of functions include MAX (the maximum of the values of the
numerical attributes in an event), MIN (the minimum value), AVE (the average value), MF (the
most-frequent value), LF (least-frequent), and #VarEQ(x), which measures the number of
variables (attributes) that take the value x in an example of a given class.

Phase 2.
1. Identify in the data all attributes that are binary-valued (i.e., boolean attributes).
2. Search for pairwise symmetry among the atiributes and then for larger symmetry or
approximate symmetry groups, based on the ideas described in (Michalski, 1969a; Jensen,
1975).

3. For each candidate symmetry group, create a new attribute that is the arithmetic sum of the
attributes in the group.

4. Determine the quality function of the newly created attributes, and select the best attribute.

5. Enhance the dataset with values of this attribute, and induce new decision rules.

5

The method described above allows the system to express simply symmetric or partially symmetric
Boolean functions and k-of-n functions, as well as more complex functions that depend on the
presence of a certain number of attribute values in the data. Such functions are among the most
difficult functions to express in terms of conventional logic operators.

3.1.2. AQI5FCLS (Flexible concept learning)

This method, pioneered by Michalski, Zhang, Bergadano and Matwin, combines both symbolic
and numeric representations in generating a concept description (Zhang and Michalski, 1991). The
program is oriented toward leaming flexible concepts, i.e., imprecise and context-dependent. To
describe such concepts it creates two-tiered descriptions, which consist of a Basic Concept
Representation (BCR) and an Inferential Concept Interpretation (ICI) to handle exceptions. In the
program, the BCR is in the form of rules, and the ICI is in the form of a weighted evaluation
function which sums up the contributions of individual conditions in a rule, and compares it with a
THRESHOLD. The leaming program learns both the rules and an appropriate value for the
THRESHOLD.

Each rule of a concept description is leamed in two steps, the first step is similar to the STAR
algorithm in AQ that generates a general rule, and the second step optimizes the rule by specializing
it and adjusting the accuracy threshold.

This flexible concept learning methodology has also been incorporated into the POSEIDON system
(Bergadano et al, 1990).

3.1.3. AQ17-HCI (Hypothesis-driven constructive induction)

AQI7-HCI (Hypothesis-Driven Constructive Induction), created by Wnek and Michalski,
represents a module employed in the AQI7 attribute-based multistrategy constructive learning
system. This module implements a new iterative constructive induction capability in which new
attributes are generated based on the analysis of the hypotheses produced in the previous iteration
(Wnek and Michalski, 1991). Input to the HCI module consists of the example set and a set of
rules, in this case generated by the AQ15 program (Michalski et al, 1986). The rules are then
evaluated according to a rule quality criterion, and the rules that score the best for each decision
class are combined into new attributes. These attributes are incorporated into the set of training
examples, and the learning process is repeated. The process continues until a termination criterion
is satisfied. The method is a special implementation of the idea of the “survival of the fittest,” and
therefore can be viewed as a combination of symbolic leamning with a form of genetic algorithm-
based learning.

A brief description of the HCI algorithm follows:
1. Induce rules for each decision class using a standard AQ algorithm (as implemented in AQLS)
from a subset of the available training examples.

2. Identify variables from the original set that are not present in the rules, and classify them as
irrelevant.

3. For each decision class, generate a new attribute that represents the disjunction of the highest
quality rules (based on their coverage of the initial training examples).

4. Modify the training examples by adding the newly constructed attributes and removing the
ones found to be irrelevant.

5. Induce rules from this modified training set.

6

6. Test these rules against the remainder of the training set. If the performance is not satisfactory,
rem to step 1. Otherwise, extend the initial complete set of training examples with the
attributes from the obtained rules. Induce the final set of rules from this set of examples.

In these examples, the inductions performed in steps 1, 5 and 6 each use the leaming algorithm
implemented in the AQL5 program.

3.14. AQ17-1 (Multistrategy Constructive Induction)

AQ17-1 combines the work of Wnek, Bloedorn and Michalski, and combines the two constructive
induction strategies implemented earlier in the AQ17-DCI and AQ17-HCI programs (described in
Sections 3.1.1 and 3.1.3) into a new AQ-based program. The algorithm for employing these
strategies is shown in Figure 1.

CInil;ial Training Examp@
v

Input update

;

Inductive learning (AQ)

Y
Remove III'EIE\'EC.IIII Attribute(s) DCI HCI
H

Attribute generation
L 7
(All Irrelevant Att. Rewnved}—
Y

"Heavy rules” contain most T
of the attributes and
rule quality is not sufficient

v
(Final classification rule)

AQ - Basic inductive algorithm
D(CI - Data-driven Constructive Induction
HCI - Hypothesis-driven Constructive Induction

Figure I. AQL7 Control Strategy

- AQ17-1 works as follows: The initial training example set is divided into a training sample (about
70%) and a tuning sample (about 30%). The training data is fed to a basic inductive learning
module (AQ). Using the rules to evaluate the attributes against the tuning sample, the HCI method
removes imelevant attributes from the description of the training data. The process of rule
generation and attribute removal is repeated until no more irrelevant attributes are found. If the

T

quality of the most recently generated rules is sufficient, then the final classification rule is
generated from the complete training set, and the algorithm stops. Rule quality criterion is a
measure of both accuracy on the tuning sample, and simplicity of the description.

If the rule quality criterion is not satisfied, the structure of the rules is checked. If “heavy rules,”
ie. those rules that cover many examples and contain most of the remaining attributes, are present
and rule quality is not satisfied, then the constructive atiribute generation module is invoked. The
newly supplemented attribute set is evaluated, and if rule quality is now sufficient, the final
classification rule is produced from the complete training set.

Because of the nature of this algorithm, the rules generated by AQ17-1 will be identical to the rules
generated by the individual HCI or DCI programs in cases in which the output from one or both of
these programs is satisfactory. For this reason, the rules discovered by AQ17-1 for each of the
three MONKSs’ problems (see Section 5) were the same as the rules generated by one of the
component programs. ;

3.1.5. AQI4-NT (noise-tolerant learning from engineering data)

The program, developed by Pachowicz and Bala, implements an algorithm specially designed for
learning from noisy engineering data (Pachowicz and Bala, 1991a and 1991b). The acquisition of
concept descriptions (in the form of a set of decision rules) is performed in the following two
phases:

+» Phase 1:
Concept-driven closed-loop filtration of training data, where a single loop of gradual
noise removal from the training dataset is composed of the following four stages:

1. Induce decision rules from a given dataset using the AQ14 (NEWGEM) inductive
learning program. : o _

2. Truncate concept descriptions by removing “least significant” rules, that is, rules
that cover QMH small portion of the training data (this step is performed using
the so-called TRUNC procedure).

3. Create a new ftraining dataset that includes only the training examples that are
covered by the truncated concept descriptions.

4. If the size of the dataset falls below an assumed percentage of the training data
(that reflects an assumed error rate in the data), then go to Phase 2. Otherwise,
return to step 1.

* Phase 2:
Acquire concept descriptions from the improved training dataset using the AQ14 learning
program.

A justification for Phase 1 is that the noise in the data is unlikely to constitute any strong pattems in
the data, and therefore will require separate rules to account for it. Thus, the examples covered by
the “light rules” are likely to represent noise, and therefore are removed from the datasct.
Experiments with AQ14-NT applied to a variety of engineering and computer vision problems have
shown that it systematically produces classification rules that both perform better and also are much
simpler than those produced by other versions of AQ.

3.1.6. AQI15-GA (AQ15 with attribute selection by a genmetic algorithm)

In this approach implemented by Vafaic and De Jong (1991), genetic algorithms are used in
conjunction with AQ15. The former are used to explore the space of all subsets of a given attribute
set. Each of the selected attribute subsets is evaluated (its fitness measured) by invoking AQL5 and
measuring the recognition rate of the rules produced.

8

The evaluation procedure as shown is divided into three main steps. After an attribute subset is
selected, the imitial training data, consisting of the entire set of attribute vectors and class
assignments corresponding to examples from each of the given classes, is reduced. This is done
by removing the values for attributes that were eliminated from the original attribute set. The
second step is to apply a classification process (AQ15) to the reduced training data set. The
decisionmlesﬂlalh&l& generates for each of the given classes in the training data are then used
for classification. The last step is to use the rules produced by the AQ algorithm in order to
evaluate the classification and hence, recognition with respect to the test data.

In order to use genetic algorithms as the search procedure, it is necessary to define a fitness
function which properly assesses the decision rules generated by the AQ algorithm. The fitness
function takes as an input a set of attribute or attribute definitions, a set of decision rules created by
the AQ algorithm, and a collection of testing examples defining the attribute values for each
example. The fitness function then views the AQ-generated rules as a form of class description
that, when applied to a vector of attribute or attribute values, will evaluate to a number. It is
evaluated for every attribute subset by applying the following steps: For every testing example a
match score is evaluated for all the classification rules generated by the AQ algorithm, in order to
find the rule(s) with the highest or best match. At the end of this process, if there is more than one
rule having the highest match score, one rule will be selected based on the chosen conflict
resolution process. This rule then represents the classification for the given testing example. If
this is the appropriate classification, then the testing example has been recognized correctly. After
all the testing examples have been classified, the overall fitness function will be evaluated by
adding the weighted sum of the maich score of all of the comrect recognitions and subtracting the
weighted sum of the match score of all of the incorrect recognitions.

3.2. AQ-Derived or Supplementary Programs

The INDUCE family of programs, developed by Michalski and Larson, can, like the AQ
programs, learn classification rules from examples. Its input data is, however, stored in the form
of predicates describing the events rather than in the form of tables of attributes and values, as is
the case with- AQ). As a result, INDUCE is well suited for leaming structural descriptions of
objects in which the relationships between different parts of the objects and existential or universal
quantifiers may be very useful in distinguishing between classes (Larson, 1977). Because the
“attributes” in the output descriptions can be generated by combining the objects’ attributes using
}raé'iou:s relationships, INDUCE is regarded as a pioneering program in the area of constructive
induction.

The inductive learning system RIGEL (Reasoned Inductive G eneralization) is a modified version
of INDUCE. RIGEL’s covering algorithm uses interleaved specialization and generalization steps,
rather than the extend against operator used by INDUCE, and works from non-randomly selected
seed examples. Additionally, the knowledge representation language in RIGEL is fully capable of
describing universal and numerical quantifications (Gamallo, Mana and Saitta, 1991).

SPARC (Sequential Pattern Recognition) employs AQ and two other leaming models to learn
patterns in sequences, as opposed to sets of events (Michalski, Ko and Chen, 1985; Dieterrich and
Michalski, 1986; Michalski, Ko and Chen, 1986). As with the structural knowledge used by
INDUCE, sequential domains are more cumplax than those applicable to AQ itself; an event's
position in the sequence and relation to its neighbors must be taken into account when learning
patterns.

AQPLUS (Forsburg, 1976) reduces the attribute space in a domain by selecting and retaining the
most useful attributes. It operates by repeatedly running AQ on different subsets of the attribute set
and evaluating the results so as to generate utility values for the different attributes.

EMERALD (Kaufman, Michalski and Schultz, 1989) integrates five inductive learning programs -
AQLS, INDUCE, CLUSTER, SPARC and ABACUS - into an environment designed to be a tool

9

for education and research in machine learning. Users can interact with the programs by
challenging them with problems from predefined domains.

AQR is a straightforward reconstruction and implementation of the basic AQ algorithm (Clark and
Niblett, 1989). As does AQ, AQR builds rules in disjunctive normal form for each decision class
using the Star methodology, as controlled by user-defined criteria.

CN2 is designed to combine the advantages of both ID3 (decision tree) and AQ (decision rule)
based algorithms. The CN2 learning algorithm generates a decision list - an ordered set of
condition-action rules in which the testing and application of the rules occurs in top-to-bottom
sequence (Clark and Niblett, 1989). The idea behind such a representation allows the algorithm to
cope with noisy data, since the data descriptions are not required to be consistent with all of the
input examples. CN2 is a computationally expensive algorithm in that it exhaustively searches
possible specializations of the rules it discovers.

CAQ (Whitehall, Lu and Stepp, 1990) was developed to improve performance in engineering
domains where continuous numeric values and noisy data may be present. Instead of quantizing
subsets of a range of possible values, CAQ's continuous domain knowledge representation
incorporates tolerance thresholds, such that any two values closer to one another than the threshold
are regarded as equivalent. Furthermore, CAQ uses a statistical method to determine the “best”
boundary point between classes.

DLG generates disjunctive descriptions of classes of events much like AQ does (Webb, 1992), but
instead of using the Starfextend against method to create rules, DLG uses least generalization
(Plotkin, 1970). The description covering a seed example is sequentially expanded to cover the
other examples of that class, and if the expanded description has a higher quality rating (typically
based on the number of positive and negative examples covered) than the basis description, it
replaces that description in the sequential generation of the rule. Computationally, this method is
simpler than AQ.

INLEN (Inference and Leaming) is an environment for discovering pattemns, trends, exceptions
and facts in databases (Michalski et al, 1992). The “toolbox™ architecture allows users to call upon
different learning and discovery programs depending on the task at hand. INLEN uses AQ to
discover rules distinguishing different classes in relational tables.

4. An EXPERIMENTAL COMPARISON: THE MONKS’ PROBLEMS
4.1 Problem definition

The domain of the MONKSs’ problems is an abstraction of a robots domain previously used in a
comparison of learning methods’ performance [Wnek et al, 1990]. The pmhq:us were presented
in a way such that physical attributes and values were replaced by generic atributes and numerical
values, for example, x! is 2 instead of head_shape is square. In this paper, we will often revert to
the latter notation or hybrid notation (such as head_shape

is 2) when it makes the presentation more understandable. A complete listing of the attributes and
values in both formats is shown in Table 1. All examples come from this event space, which
spans 6 multiple-valued attributes (it has a total of 432 possible examples). The sizes of the value
sets of the attributes, x1, x2, ..., x6, are 3, 3, 2, 3, 4, and 2, respectively.

Attribute xl x2 x3 x4 x5 x6
Ro{l;ar Aft. head shape body_shape is_smiling holding jacker_color has_tie
alue

1 round round yes sword red yes
2 square square no balloon yellow no
3 octagon octagon flag green
4 blue

Table 1. Auributes and values in the robots domain

10

Problem 1.

There were 124 training examples, which represented 30% of the total event space (62 positive and
62 negative). The testing examples were the set of all possible examples (216 positive and 216
negative). The goal concept was as follows:

(head_shape = hody_éhnpe} or (jacket color = red)

This problem represented a straightforward concept in which the values of two attributes had to be
compared, either implicitly or explicitly. A diagrammatic visualization of this problem is shown in
Figure 2. The dark area in this figure represents the positive concept, and the white area represents
the concept negation, or the set of all possible counterexamples. Positive and negative training
examples are represented by + and - respectively.

Problem 2.

There were 169 training examples, which represented 40% of the total event space (105 positive

and 64 negative). The testing examples were all possible examples (190 positive and 242

negative). The goal concept was as follows: '
Exactly two of the six attributes have their first value

In other words, exactly two of the x; have values of 1. This concept does not have a simple
representation in Disjunctive Normal Form, and therefore poses a problem for many symbolic
learning methods.

A diagrammatic visualization of this problem is shown in Figure 3.

Problem 3.

There were 122 training examples, which represented 30% of the total event space (62 positive and
60 negative). The testing examples were the set of all possible examples (204 positive and 228
negative). Noise was inserted into the example set so that 5% of the training examples were
misclassified. The goal concept was as follows:

(jacket_color is green and holding is sword) or
(jacket color is not blue and body_shape is not octagon)

The goal of this problem was to test learning programs’ adaptation to noisy environments.

A diagrammatic visualization of this problem is shown in Figure 4. The plus in the white area and
the minuses in the black area represent the noisy training examples.

11

Learn a DNF-type Concept

(x4 = x5) or (x2=1)

Problem M1

M1

DNF-type

X

l | 2 | g

gX
L e el v lezlelr]lz]e

9x
vizlelz]vlzlelzilzlr ez]z]s]2

X
L | z | £
X
t |z e]ztelr]z]e
ox
slzlulzllz]elz]r]zl lz iz lz]e]z
| Il + 1 * |+
Pjrgeji +]
*] + I +
1| I
i 1§+ 11 + |+
+* 1 1 I i+
+ + +| |+ + |+
+ + +
i Ppiji 1 +
NENDDRD
(|] +] -+
+11 1|1 1
{1 1|1
] + 1
L1 + +
+ +]+
1 I +] L JE
] + +*
+] *] 1 +
+ 1 {1+
-+ 1] 1|+]
+11 [+ +
+ + +
+ |+ T AE JEAE 2R AR

x2

1|2|a|4|1|2|3|4|1|z[3|4

x3

1|o]1 [ul1|c|1|u|1|o|1]o|1|n|1|n|11o|1io|1|n]1]u

+k|* k| +]| |+

e[|+
Flalt v+ wle|ele|e]e|e]eie]++]e]e(+]|+|+|++
+'i++-l'll--ll+-|-+~l-++++++lll1"l-++-l-+
Flalvlt|+ + |+ w]e (e [#{e]+|+]+][e]e|[+|F|s]+ ||+

RO LE BB DR BRI AR Bk Ll hd b bk
R LR R A R AR AR bl R b s

BRI EAED KAk + +*|(F|* |+

(esiou ou ‘sejdwexa $z1) 1es Buluies)

(sejdwexe anpsod 9L g ||B) 198 3S8L

Figure 2. The first MONKs’ Problem

Training set (169 examples, no noise)

Test set (all 142 positive examples)

Problem M2: Learn a Non-DNF-type Concept
[Exactly two of the six attributes have their first value]

12

= e = = = = |-
- - [#]= - *|=(+]= -
- - + - + =+ g T I
=4 i S = e e
-dl= * - * ~ |7
= + = * -1- - |7
- + |- + + | = |+ =
< = T=[+=1I+ = = I=l= o &~ R[~ =%
-|= + - + - + + = L
+|+| |+ -+ - - T
- -1 |+ ry - + =T .
- *[=+]=]+ n +| = I
- + |-+ +|+ - + + ="
- - |- + Ry X ¥ o]
=T 1a =l — |-
= . +| |- |- +| |- ~ |°
xi
] M2
2
1]2[3[4|1|2x|=3|4|1|2§'.1|4 Coimplox
1]2]1]2]1]2]1]2]1]2]1]2]1]2]1]2]1]2]1]2]1]2]1]2] Non-DNF-type
+ + + N |
+ + + = .
| |[+| [#] [*#|+] |+ | |+ [+ =
+ + IS = [,
+ + + + |+ + + + + jod
+ + + = [
+| [+] [+] [+]+] |+ « [+] [+ ~ |7
1....+...+...+...++ + é ¥ [+ |+ S Y
+| [+ [+] [*#[*] |+ ¥ |+ |+ - I
NOEORORE + o~
+ + + = I
+| [+| [+] [+]|+] |+ | [+ |+ v |7
#| (+] |+] |+|*| |+ *| |+| |+ = : o
[+ |+ [+] |+ + o~
T+ [+ [*¥] [*[*] [+ *| |+] [+ - [
«{+] |+ 1+ |+ - I

Figure 3. The second MONKSs’ Problem

13

Learn a DNF-type Concept from Data with 5% Noise
(x2=3 and x1=1) or (x2=4 and x5#3)

Problem M3

DNF-type
with Noise

X
! | g | £
[T
bz etz e]trlele
9x
T NENENE A NE N
1 1 1
1 1} [e
+ |4 + 1 +*- 1
+ 1 | 1
+|+ ¥ |+ 1
* |+ 1 1
+* |4+ + + -+
+ [+ [+ + il 1+ [+
B 1 1 B 1
] []]
1l +|1 + 1
1 +| [+
||+]]
+ |+ 1 1
+| [+]+ +
+ + + 1
1 I iyt 1
I [[1 1 |
+ + |+
I + |+ +| |+ |
+|+ +«| [+] I ++
+ 1 * |+
+ I+]]
1|+ +]

1]a|a|4|1|2|3]4|1|z|3[4

3

1|al1|u|11u|||o[1{a[|lo[1|u|1|n[1iu|1tu[1|n|1|o

X
L | Z | £
=1 4
b1z e v e le]t]z]ce
X
Vigljzl ezl lz]ilz]r]t]e
LAE L AR LA IR EIE S EAE
L IEIEAE] * ¥+ + L AL AE AL
LIEIE AL * (¥ ||+ + |+ |+
LIEIE AL LI IE AE S + |+ |+ |+
LAEJE AR L AL AE JE + |1+ |+
4|4+ +|+|#|+ +]|+
(]| + L AL AL L i+
LI IR AR * | ¥ ||+ * ||+ +
LA I AR S LA AL AL L AR AL AL
+4|+l+ + 4|+ + Aae
L IE AR AL, L AR AR AR J * |+ |+ |+
||+ L AR AR AR S |+
NN AL R A E AL AR
e A A A A E A AR B A AN R R
LIEIEAR * (¥ + + |+ |+ |+
LICIE L |+ LA AR AL
 JE AL AL LA L AL ||+
| ¥+ |+ LI AL AR EIE A AR

(peussepsiuLg ‘sajdwexe zz1) 19s Bulue

(sejdwexs annisod 82z IIe) 198 1591

Figure 4. The third MONKs’ Problem

14
5. SUMMARY OF RESULTS

Below is a listing of the rules obtained by the various AQ programs (AQ17-DCI, AQ17-HCI,
AQ17-1, AQ15-GA, AQ15-FCLS or AQ14-NT), and the results of testing them on the i
examples. A listing of all the data, both training and testing sets, as provided by the creators of the
problems, is in the Appendix.

Rules generated by different programs were tested using the ATEST program that computes a
confusion matrix (Reinke, 1984). ATEST computes the so-called consonance degree between an
unknown example and the rules for each decision class. The output from this program includes
numerical evaluations of the accuracy of the rules based on the percentage of the testing examples
correctly classified (by choosing the rule that best fits the example), and the percentage of examples
precisely matched by the comect decision rule. These percentages are output by ATEST as
OVERJ}LII, % CORRECT-FLEX-MATCH and OVERALL % CORRECT-100% MATCH,
respectively.

Details of the different programs, and of the AQ algorithm underlying these programs are given in
Sections 3.1 and 2.1 respectively. It should be noted that results are not always presented for each
of these programs as applied to each of the three problems. As indicated above, these pro

derive from the same basic method, each adding features appropriate to specific types of problems.
The different programs derived basically the same rule for the first problem; the ones shown here
are the ones whose knowledge representation schema allowed for the most elegant presentation of
the output. We felt that for the sake of brevity and emphasis on the matching of the programs’
different features with the types of problems to be solved, we should present only the results of the
programs better suited for the given type of problem. For example, we felt that there was no
reason to apply AQ14-NT, a program with special features to cope with noisy data to Problem 2, a
problem in which data were without noise, and the testing events were 100% correctly classified
by the rules obtained by other programs. For the same reason, we do not emphasize the results of
the application of the data-driven constructive induction program AQI17-DCI to Problem 3; its
jiigqorittun is strictly data-driven, and as such is less suitable for leamning from noisy data than other

programs.

The results of applying the six AQ programs to the three MONKSs' problems are summarized in
Table 2. The percentages represent the correct classification percentages as calculated by ATEST.

PROGRAM # | w2 | #
AQI17-DCI 100% | 100% | 97.2%
AQI17-HCI 100% | 93.1% | 100%
AQ15-FCLS 100% | 92.6% | 97.2%
AQ14-NT 100% | N/A 100%
AQ15-GA 100% | 86.8% | 100%
AQI17-HCI_DCI 100% | 100% | 100%

Table 2. Summary of AQ programs’ correct classification percentages

5.1. Results for the 1st problem
5.1.1. Rules obtained by AQ17-DCI and AQ17-1

These are the rules obtained by AQ17-DCI, a version of the AQ program that employs data-driven
constructive induction. The results include 1 rule for Class 0 (that represents positive examples of
the concept}, and 2 rules for Class 1 (that represents the negative examples):

15
Class 0:
Rule 1 (jacket_color # red] & [head_shape # body_shape] (total:62, unique:62)
Class 1:

Rule 1 [head_shape = body_shape] (total:41, unigue:33)
Rule 2 [jacket_color = red] (total:29, unigue:21)

In the above rules, expressions in [] denote individual conditions in a rule, “iotal’” means the total
number of training examples of the given class covered by the rule, and “unique” means the
number of training examples covered by that rule only, and not by any other rules.

There is only one rule for Class 0, and there are two rules for Class 1. Thus, if either of the Class
1 rules is matched by a given instance, that instance is then classified as belonging to Class 1. A
set of such rules is logically equivalent to a disjunction of conjunctions. The syntax of the rules is
defined formally according to the variable-valued logic calculus VL1 (Michalski, 1973a).
Individual rules correspond to “complexes” in VL1.

These rules were also found by AQ17-1. While the combined AQ17 algorithm (Section 3.1.4)
initially constructs hypothesis-based rules, the rules discovered by this method (see Section 5.1.2),
although 100% accurate, were found to be too complex. The program therefore attempted data-
driven constructive induction and obtained the rules shown above.

The results of applying the rules to the testing examples were:

RESULTS _

OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

where:

% FLEX MATCH means the percentage of the correctly classified examples within the total set of
testing examples, using a flexible matching function (see Reinke, 1984), and % 100% MATCH
means that the percentage of correctly classified examples that matched the rules exactly.

The number of testing events satisfying individual rules in the correct class description is given in
the table below:

RULES

R1 R2
CLASS 0 215
CLASS 1 144 108

5.1.2. Rules obtained by AQ17-HCI

These are the rules obtained by AQ17-HCI, a version of the AQ program that employs hypothesis-
driven constructive induction (see Section 3.1.3. The results include one rule for Class O that
mpmﬁf positive examples of the concept, and one rule for Class 1 that represents the negative
examples:

16

Rule 1 [Neg = false] (total:62, unique:62)

Class 1:
Rule 1 [Pos = false] (total:62, unique:62)

where Neg and Pos are attributes constructed from the original ones, or intermediate ones, as
defined below (these rules, as one can check, are logically equivalent to the AQ17-DCI generated
rules)

c1 <:: [head_shape = round] & [body_shape = round] & [jacket_color = red]
c()5 <:: [head_shape = square] & [body_shape = square] & [jacket_color = red)
c08 <:: [head_shape = octagon] & [body_shape # octagon] & [jacket_color = red]
c10 <:: [head_shape = round] & [body_shape = round]

cl2 <:: [jacket_color = red]

cl3 <:: [head_shape = square] & [body_shape = square]

¢l5 <:: [head_shape = octagon] & [body_shape = octagon]

Pos <:: [c10 = false] & [c12 = false] & [c13 = false] & [cl5 = false]

Neg <:: [c01 = false] & [c05 = false] & [c08 = false]

TEST RESULTS - SUMMARY

OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

Number of testing events satisfying individual rules in the correct class description:

RULES

R1
CLASS 0 215
CLASS 1 216

Other programs either were either not used on this problem, or generated similar results.

5.2. Results for the 2nd problem
52.1. Rules obtained by AQ17-DCI and AQ17-1

The rules below were obtained by AQ17-DCI, which is capable of generating all kinds of new
attributes from the original attributes, and by AQ17-1, which incorporates the DCI method. For
the problem at hand, the program found that a new attribute that expresses the number of variables
in the training examples that have some specific value is highly relevant to this problem. Such an
attribute is assigned by the program the name #VarEQ(x), which means *“the number of variables
with value of rank x (in their domain)"” in an example. The lowest value in the domain has rank 1,
the next lowest has rank 2, etc. In this case, the relevant attribute was #VarEQ(1) - the number of
variables taking on their first, or lowest value. Based on this attribute, the program constructed
appropriate decision rules. There were two one-condition rules for Class 0, representing the
positive examples of the concept, and one rule for Class 1 that represents the negative examples.
E]l'u: rué& for Class 1 is logically eguivalent to the negation of the union (disjunction) of the rules for
ass 0.

17

Rule 1 [#VarEQ(1) =z 3]
Rule 2 [#VarEQ(1) s 1]

Class 1:
Rule 1 [#VarEQ(1) =2]

The results of applying the rules to the testing examples were:

RESULTS

OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

4.2.2. Rules obtained by AQ17-HCI

There are 4 top level rules for Class 0 (positive examples), and 6 top level rules for Class 1
(negative examples):

Class 0:

Rule 1 [Pos73 = true] (total:90, unique:49)

Rule 2 [c14 = false] & [c26 = false] & [c53 = false] & [c67 = false] &
[c72 = false] & [Neg74 = false] (total:38, unique:6)

Rule 3 [holding = balloon or flag] & [c6 = false] & [c20 = false] & [Neg74 = false]
(total:22, unigue:5)

Rule 4 [head_shape = square] & [has_tie = false] & [c44 = false] & [c50 = false] &
[Neg74 = false] (total:6, unique:2)

Rule 1 [Neg74 = true] (total:43, unique:30)

Rule 2 [jacket_color # red] & [has_tie = true] & [c60 = true] & [Pos73 = false]
(total:17, unique:4)

Rule 3 [head_shape # round] & [body_shape = square] & [c28 = false] &
[Pos73 = false] (total:16, unique:7)

Rule 4 [body_shape = octagon] & [c48 = true] & [c66 = true] (total:4, unique:2)

Rule 5 [jacket_color = green] & [c43 = true] & [c52 = false] & [c53 = false] &
[c55 = false] & [c69 = true] & [Pos73 = false] (total:4, unique:2)

Rule 6 [body_shape = octagon] & [c9 = false] & [c10 = true] & [c23 = true] &
[€32 = true] (total:3, unique:1)

Attributes “cj, i=1..72" “Pos73,” and “Neg74” were constructed during the learning process. The
following is a partial listing of the constructed attributes that were relevant to the discovered rules;
(Thrun, Mitchell and Cheng, 1991) contains the complete listing.

18

c2 < [jacket_color = red or blue]

cd <::[body_shape = round] & [is_smiling = false]
¢5 <::[head_shape # round] & [is_smiling = false]
c6 <:: [head_shape # round] & [body_shape # round]
c; <:: [holding = ﬂag] & [jacket_color = yellow]

co <

[head_. TM] & [jacket_color = red]
¢10 <:: [holding = ﬂag [jacket_color # red]

c‘.-'{} <:: [jacket_color # red] & [c18 = false]
€72 <:: [jacket_color # blue] & [c37 = true]

Pos73 <:: [c4 = false] & [cl6 = false] & [c33 = false] & [c39 = false] & [c40 = false] or
[cl5 = false] & [c43 = false] & [c47 = false] & [c68 = false] or
[body_shape # octagon] & [c2] = false] & [c4] = true] & [c44 = false] &
[c65 = true] & [c67T = false] or
[c33 = true] & [c60 = true]

Neg74 <:: [c4 = false] & [c42 = true] & [c56 = false] & [c65 = true] & [c68 = true] or
[c2 = false] & [c4 = false] & [c16 = false] & [c17 = true] & [c26 = true] or
[is_smiling = false] & [holding = sword] & [c14 = false] & [c4] = true] &

[c43 = true] & [c59 = false] & [c69 = false] & [c70 = false] or
[has_tie = false] & [c5 = true] & [c44 = false] & [c6] = false]

TEST RESULTS - SUMMARY

OVERALL % CORRECT FLEX MATCH: 93.06
OVERALL % CORRECT 100% MATCH: 86.57

The above summary of the results shows that the rules generated by AQ17-HCI approximate quite
well the concept in Problem 2 although they use only logical operators. This result is quite
interesting because concepts such as the one in Problem 2 are among the most difficult to learn
using solely logic-based inductive learners (classical rule learning or decision tree leaming
programs). This result demonstrates the power of hypothesis-driven constructive induction.

Number of testing events satisfying individual complexes in the correct class description:

RULES
R1R2R3R4R5R6
CLASS 0 232 84 54 12
CLASS 1 77 4 32 10 5 4

5.2.3. Rules obtained by AQ17-FCLS

These are the rules obtained by AQ17-FCLS, a version of the AQ) program that learns flexible
concepts by generating rules that permit parual matching. The threshold parameter indicates the
rnzmmum percentage of the individual conditions in the rule that must be satisfied for the rule to

ly. The results include two rules for Class O that represent positive examples of the concept,
and 18 rules for Class 1 that represent the negative examples. The discovered rules fully
encompass Class 0, but they failed to get a complete grasp of the concept of Class 1:

19
Class 0:

Rule 1 [head_shape = round] & [body_shape = round] & [is_smiling = true] &
[holding = sword] & [jacket_color = red] & [has_tie = true]
with THRESHOLD =50 %
(Total positive examples covered: 64)

This rule says that three or more variables must have rank equal to 1.

Rule 2 [head_shape = round] & [body_shape = round] & [is, _smiling = false] &
[holding # sword] & [jacket_color = red] & [has_tie = false]
with THRESHOLD = 83 % (5/6)
(Total positive examples covered: 41)

This rule says that five or six out of six variables must not have their first values, or equivalently,
that at most one variable may have its first value. Thus the disjunction of these two rules above
indicates that the number of variables which have their first value cannot be equal to 2.

These rules classified correctly 100% of the examples of Class 0.

Class 1:

Since the current program does not have the ability to express the negation of the above two rules
for Class 0, to program generated many “lightweight” rules to cover all examples of Class 1. The
overall performance using the flexible match was not 100% because in some cases when an
example matched equally well the rules for both classes, an incorrect class was chosen. In the next
version of the program, we plan to include the missing negation operator.

Rule 1 [is_smiling = true] & [holding = sword] & [jacket_color = yellow] &
[has_te = false]
with THRESHOLD = 100 %
(Total positive examples covered: 8)

Rule 2 [head_shape # round] & [body_shape # round] & [is_smiling = true] &
[holding # sword] & [jacket_color # red] & [has_tie = true]
with THRESHOLD = 100 %
(Total positive examples covered: 9)

Rule 3 [head_shape # round] & [body_shape # round] & [is_smiling = false] &
[holding # sword] & [jacket_color = yellow] & [has_tie = false]
with THRESHOLD = 100 %
(Total positive examples covered: 7)

Rule 4 [head_shape = octagon] & [body_shape = round] & [is_smiling = true] &
[holding = sword] & [jacket_color = green] & [has_tie = false]
with THRESHOLD = 83 %
(Total positive examples covered: 5)

Rule 18 [head_shape = round] & [body_shape = round] & [is_smiling = false] &.
[holding = sword] & [jacket_color # red] & [has_tie = true]

20

with THRESHOLD = 100 %
(Total positive examples covered: 3)

TEST RESULTS - SUMMARY

The percentage of correctly classified testing events: 92.6%
The percentage of correctly classified testing events in Class 0: 100.0%
The percentage of correctly classified testing events in Class 1: 85.2%

The total number of rules in the descriptions: 2 for Class 0
18 for Class 1
The total number of conditions in the descriptions: 110

53. Results for the 3rd problem
5.3.1. Rules obtained by AQ17-HCI and AQ17-1

Below are the rules obtained by the hypothesis-driven constructive induction method, both as a
part of AQ17-1 and as a stand-alone learning program:

Class 0:

Rule 1 [Posl = true] (total:49, unigue:49)

Rule 2 [body_shape # round] & [holding # sword] & [jacket_color = green]
(total:11, unique:11)

Rule 3 [body_shape = round] & [holding = sword] & [jacket_color = green]
(total:1, unique:1)

Rule 4 [body_shape = square] & [holding = balloon] & [jacket_color = yellow]
(total:1, unique:1)

Rule 1 [Neg2 = true] (total:57, unique:57)
Rule 2 [body_shape = octagon] & [holding = sword] &
[jacket_color = green or blue] (total:3, unique:3)

where Posl and Neg?2 are attributes constructed from the original ones (Wnek & Michalski, 1991)
Posl <:: [jacket_color = blue] or

[body_shape = octagon] & [jackei_color # green]
Neg2 <:: [body_shape # octagon] & [jacket_color # blue]

TEST RESULTS - SUMMARY

OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 86.11

21

Since this problem involves noisy data, the flexible match accuracy figures should always be used.
The results using a 100% match are shown just for comparison.

Number of testing events satisfying individual rules in the correct class description:

RULES

R1 R2R3 R4
CLASS 0O 180 24 0 O
CLASS 1 216 12

Rules 3 and 4 for Class 0 were each exceptions, covering a single example of the class. As can be
seen from the above chart, in each case that example was a noisy event, which was also covered by
the wider ranging rules of Class 1. AQ's evaluation capabilities were able to select the proper rule
to apply in a flexible match.

532. Rules obtained by AQI4-NT
These are the rules obtained by AQ14-NT, a version of the AQ program that employs a noise-
filtration technique. The results include one rule for Class O that represents positive examples of
the concept, and one rule for Class 1 that represents negative examples.
After only two loops of concept-driven filtration of training dataset (with truncation parameter
equal to 10%) and repeated learning, we received the following set of rules:
Class 0:

Rule 1 [jacker_color = blue]

Rule 2 [body_shape = octagon] & [holding # sword]

Rule 3 [body_shape = octagon] & [jacket_color = red or yellow]
Class 1:

Rule 1 [body_shape # octagon] & [jacket_color # blue]

Rule 2 [holding = sword] & [jacket_color = green]
These rules recognized all test data correctly, i.e., on the 100% level.
The program was able to filter out the events repms;:nﬁng noise in the data and achieve such a high
degree of recognition.
53.3. Rules obtained by AQ17-FCLS
These are the rules obtained by AQ17-FCLS. The results include two rules for Class 0 that
represent positive examples of the concept, and one rule for Class 1 that represents the negative
examples. The threshold parameter indicates the minimum percentage of selectors in the rule that
must be true for the rule to apply. This set of rules is intentionally incomplete and inconsistent
with the training set since it was generated with a 10% error tolerance. This produced better results
than other tolerances that were tried.
Class 0:

Rule 1 [head_shape = round] & [body_shape = octagon] & [jacket_color = blue]

with THRESHOLD = 67 %
(Total positive examples covered: 42)

22

Rule 2 [head_shape = round] & [body_shape = octagon] & [jacket_color = blue]
with THRESHOLD =67 %
(Total positive examples covered: 26)
Class 1:
Rule 1 -

[body_. round or square] & [jacket_color # blue]
with II-IRESH =100 %
(Total positive examples covered: 57)

TEST RESULTS - SUMMARY
The percentage of correctly classified testing events: 97.2%
The percentage of correctly classified testing events in Class 0: 100.0%
The percentage of correctly classified testing events in Class 1: 94.7%
The total number of rules in the descriptions: 2 for Class 0
1 for Class 1
The total number of conditions in the descriptions: 8

5.3.4. Rules obtained by AQ15-GA

Below are the rules obtained by AQ15-GA, a gmgram that uses a genetic algorithm in conjunction

with the AQ rule-generation algorithm. The

rule is for the positive examples of the concept,

Class 0, and the second for the negative examples, Class 1. A genetic algorithm determined that 3
attributes (body_shape, holding, and jacket color) were the most meaningful. Using these, the
rules discovered were as follows:

Class 0:

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5

Rule 1
Rule 2

[jacket_color = blue]
[body_shape = octagon] & [jacket_color = red or yellow]

[body_shape = round] & [holding # sword] & [jacket_color = green]
[body_shape = round] & [holding = sword] & [jacket_color = green]
[body_shape = square] & [holding = balloon] & [jacket_color = yellow]

[body_shape # octagon] & [jacket_color # blue]
[body_shape = octagon] & [holding = sword] &
[jacket_color = green or blue]

Results on testing the rules on testing events using program ATEST:

TEST RESULTS - SUMMARY

OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

23
6. COMPARISON OF AQ WITH OTHER PROGRAMS

In the Thrun study (Thrun, Mitchell & Cheng, 1991), the AQ programs performed very favorably
in comparison with the other programs examined (Table 3). Programs and algorithms that were
tested on these problems included Assistant Professional (Cestnik, Kononenko & Bratko); tl.’ll:_’lil'll.r
(Dzeroski); IDSR, IDL, ID5R-hat and TDIDT (Van de Velde); ID3 (with and without windowing),
ID5R, AQR, CN2 and CLASSWEB (Kreuziger, Hamman and Wenzel); PRISM (Keller);
ECOBWEB (Reich & Fisher); Backpropagation (Thrun) and Cascade Correlation (Fahlman).

RESEARCH GROUP AFFILIATION AND #1 #2 #3
LEARNING PROGRAMS APPLIED (DNF-type) | (non-DNF) | (noisy DNF)

Jozef Stefan Institute, Lj ubljana, Slovenia

Assistant Professional 100%: 81.3% 100%

mFOIL 100% 69.2% 100%
Vrije Universiteit Brussel, Brussels, Belgium

ID5SR B8l1.7% 618%

IDL 972% 66.2%

IDSR-hat 90.3% 65.7%

TDIDT 757 % 66.7%

Institute for Real-Time Computer Control Systems and
Robotics and University of Karlsruhe, Karlsruhe, Germany

D3 98.6% 67.9% 94.4%
ID3, no windowing 83.2% 69.1% 95.6%
ID5R 79.7% 692% 952%
AQR 95.9% 79.7% 87.0%
CN2 100% 69.0% 89.1%
CLASSWEB 0.10 71.8% 64.8% 80.8%
CLASSWEB 0.15 65.7% 61.6% 85.4%
CLASSWEB 0.20 63.0% 57.2% 752%
University of Zurich, Zurich, Switzerland
PRISM [s63% | 727% | 9%03%

Carnegie Mellon University, Pittsburgh, Pennsylvania
and Vanderbilt University, Nashville, Tennessee

ECOBWERB leaf prediction T1.8% 67.4% 68.2%
ECOBWEB Lp. & information utility 82.7% 71.3% 68.0%
Carnegie Mellon University, Pittsburgh, Pennsylvania
Backpropagation 100% 100% 93.1%
Backpropagation with weight decay 100% 100% 97.2%
Cascade Correlation 100% 100% 07.2%

Center for Artificial Intelligence,
George Mason University, Fairfax, Virginia

AQ17-DCI 100% 100% 94.2%
AQ17-HCI 100% 93.1% 100%
AQ17-1 100% 100% 100%
AQ15-FCLS 92.6% 972%
AQI4-NT 100%
AQI5-GA 100% 86.8% 100%

Table 3. Classification Results Reported by Thrun (updated to show recent AQ17 results)

24
The results shown in Table 3 provide a partial update to the results reported by Thrun. They
include an improved result from AQ17-DCI for problem 3, and also the AQ17-1 rj::sults that were
achieved after the initial study was completed. They do not, however, reflect later results obtained
by other researchers. While the results do not guarantee either that all the programs were employed
with optimal parameter settings or that these results can be extended to other concept learning
problems, it is interesting to note that in the initial study, only the rule-based AQ programs were
able to come up with 100% classification rates on both the k-of-n concept and the noisy concept.
In addition, the lower bounds on the classification rates of the AQ programs were very respectable
in comparison with the other programs, indicating that these programs can generate reasonable
results, even when the optimal tool is not being used.
An earlier study by Wnek, Sarma, Wahab and Michalski (1990) compared the standard version of
AQIS5, a backpropagation neural net, the CFS classifier system and the C4.5 decision tree learning
program by testing their ability to leamn five concepts created by human subjects. Their results
indicated that the symbolic algorithms were better suited toward these symbolic-oriented problems,
both in terms of error rate and knowledge complexity.
Spears and Gordon (1991) compared NEWGEM (a predecessor to AQ15), C4.5, and GABIL, a
genetic algorithm-based system, on an artificial disjuncts-and-conjuncts domain and on breast
cancer case data. They found comparable error rates among the systems and proposed a
multistrategy system that would improve the GABIL results by incorporating elements of other
systems in the form of genetic operators.
Bergadano, Matwin, Michalski and Zhang (1990) compared three AQ-based systems with
ASSISTANT and with an exemplar-based method on two real world domains: congressional
voting and labor negotiations. The AQ programs generated simpler and more accurate rules,
particularly when flexible concept learning (such as in AQ15-FCLS) was employed.

7. CONCLUSIONS

We have described a family of inductive learning programs that are based on the AQ learning
algorithm. Recently developed programs in this famil;r‘ are capable of using constructive induction
techniques, learning flexible concepts, filtering out noisy data, and taking multistrategy approaches
which can use the abilities of different learning methods to their advantage.

When tested on the MONKSs’ problems, the AQ-based programs were able to generate rules that
closely approximated or exactly matched the target concepts, By choosing the proper program,
users could generate a simple and accurate concept representation.

Researchers have been turning more frequently to comparisons of different learning paradigms. No
single set of test problems will generate results that will hold true universally. Nonetheless, by
performing different comparisons, and by establishing diverse sets of benchmark problems, we
cmbticgin to discover details of the suitability of different leaming methods to different types of
problems.

As the testing of the AQ programs shows, they are very powerful, and ready for use in various
practical applications. By combining some of the specialized techniques and modules, more
powerful and versatile modules can be created. For example, the integration of the DCI and HCI
modules of AQ17 into a single unit resulted in a program capable of adapting to the challenges
presented by both the second and the third MONKSs' problem. An important topic of this ongoing
research (and of many other multistrategy projects) is the development of a um.g:d control system
ﬂ}?it a;anﬁintegmte smoothly the capabilities of the different techniques so that they can be used most
efficienty.

Acknowledgments

This research was done in the Anificial Intelligence Center of George Mason University. The
activities of the Center are supported in part by the by the National Science Foundation under grant
No. IRI-9020266., in part by the Defense Advanced Research Projects Agency under the grant
administered by the Office of Naval Research, No. N0O(0014-91-J-1854, and in part by the Office
of Naval Research under grant No. N00014-91-J-1351.

25

References

Bala, J.W. and Pachowicz, P.W, “Recognizing Noisy Patterns of Texture via Iterative
Optimization and Maiching of their Rule Description”, Reports of Machine Learning and Inference
Laboratory, MLI 90-18, George Mason University, Fairfax, VA 1990,

Bergadano, F, Matwin, S, Michalski, R.S. and Zhang, J, “Leamning Two-Tiered Descriptions of
Flexible Concepts: The Poseidon System,” Reports of Machine Leaming and Inference
Laboratory, MLI 90-10, George Mason University, Fairfax, VA 1990.

Bloedom, E., and Michalski, R.S, “Data-driven Constructive Induction in AQ17-DCL: A Method
and Experiments,” Reports of Machine Learning and Inference Laboratory, GMU, 1991.
Bloedomn, E., Michalski, R.S. and Wnek, J, “AQ17 - A Multistrategy Constructive Leamning
System,” Reports of Machine Learning and Inference Laboratory, GMU, 1991,

Clark, P. and Niblett, T, “The CN2 Inductive Algorithm,” Machine Learning, Vol. 3, pp. 261-
283, 1989.

Cuneo, R.P, “Selected Problems of Minimalization of Variable-Valued Logic Formulas,” Master's
Thesis, Department of Computer Science, University of Illinois, Urbana, 1975.

Dietterich, T. and Michalski, R.S., “Leaming to Predict Sequences,” Chapter in Machine
Learning: An Artificial Intelligence Approach Vol. II, R. S. Michalski, J. Carbonell and T.
Mitchell (Eds.), Morgan Kaufmann Publishers, Los Altos, CA, pp. 63- 106, 1986.

Forsburg, S, “AQPLUS: An Adaptive Random Search Method for Selecting a Best Set of
Attributes From a Large Set of Candidates” Internal Report, Department of Computer Science,
University of Illinois, Urbana, 1976.

Gamello, R, Mana, F. and Saitta, L, “RIGEL: An Inductive Learning System,” Machine Learning,
Vol. 6, pp. 7-35, 1991.

Jensen, G.M, “SYM-1: A Program that Detects Symmetry of Variable-Valued Logic Functions,”
Report No. 729, Department of Computer Science, University of [llinois, Urbana, May 1975.
Kaufman, K, Michalski, R.S. and Schultz, A, “EMERALD 1: An Integrated System of Machine
Learning Programs for Education and Research, User’s Guide,” Reports of Machine Learning and
Inference Laboratory, MLI 89-7, George Mason University, Fairfax VA, 1989.

Larson, J, “A Multi-Step Formation of Variable-Valued Logic Hypotheses,” Proceedings of the
1976 International Symposium on Multiple-Valued Logic, Logan UT, May 25-28, 1976.

Larson, J, “INDUCE-1: An Interactive Inductive Inference Program in VL2] Logic System,”
Report No. 876, Department of Computer Science, University of Illinois, Urbana, 1977.
Michalski, R.S, “Recognition of Total or Partial Symmetry in a Completely or Incompletely
Specified Switching Function,” Proceedings of the IV Congress of the International Federation on
Automatic Control (IFAC), Vol. 27, pp. 109-129, Warsaw, June 16-21, 1969.

Michalski, R.S, “On the Quasi-Minimal Solution of the Covering Problem,” Proceedings of the V
International Symposium on Information Processing (FCIP 69), Vol. A3 (Switching Circuits),
Bled, Yugoslavia, pp. 125-128, 1969.

Michalski, R.S, “Discovering Classification Rules Using Variable-Valued Logic System VLL,"
Proceedings of the Third International Joint Conference on Artificial Intelligence, pp. 162-172,
Stanford, California, August 20-23, 1973.

Michalski, R.S, “AQVAL/1 -- Computer Implementation of a Variable-Valued Logic System VLI
and Examples of its Application to Pattern Recognition,” Implemented AQVAL Programs,”
Proceedings of the First International Joint Conference on Pattern Recognition, pp. 162-172,
Washington DC, pp. 3-17, October 30 - November 1, 1973.

Michalski, R.S, “Toward Computer-Aided Induction: A Brief Review of Currently Implemented
AQVAL Programs,” Report No. UIUCDCS-R-77-874, Department of Computer Science,
University of [linois, Urbana, May, 1977.

Michalski, R.S, “A Theory and Methodology of Inductive Leamning,”Machine Learning: An
Artificial Intelligence Approach, R. S. Michalski, J. Carbonell and T. Mitchell (Eds.), pp. 83-134,
Morgan Kaufmann, 1983.

26

Michalski, R.S., Ko, H. and Chen, K., “SPARC/E(V.2), An Eleusis Rule Generator and Game
Player,” ISG 85-11, UIUCDCS-F-85-941, Department of Computer Science, University of
Illinois, Urbana, IL, February 1985,

Michalski, R.S., Ko, H. and Chen, K., “Qualitative Process Prediction: A Method and Program
SPARC/G,” Expert Systems, Guetler, C. (Ed.), Academic Press Inc., London, 1986.

Michalski, R.S. and Larson, J.B, “AQVAL/1 (AQT) User’s Guide and Program Description”,
Report No. 731, Department of Computer Science, University of Illinois, Urbana, 1975.
Michalski, R.S. and Larson, J.B, “Selection of Most Representative Training Examples and
Incremental Generation of VL1 Hypotheses: the underlying methodology and the description of
programs ESEL and AQ11,” Report No. 867, Dept. of CS, University of Illinois, Urbana, 1978.
Michalski, R.S., Mozetic, L, Hong, J., and Lavrac, N., “The Multipurpose Incremental Learning
System AQI5 and its Testing Application to Three Medical Domains,” Proceedings AAAI,
Philadelphia, August 11-15, 1986,

Mozetic, 1., “NEWGEM: Program for Leaming from Examples, Program Documentation and
User’s Guide”, Report No. UTUCDCS-F-85-949, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1985.

Pachowicz, P.W. and J. Bala, “Improving Recognition Effectiveness of Noisy Texture C
through Optimization of Their Descriptions”, Proceedings of the 8th Internanional Workshop on
Machine Learning, Evanston IL, pp. 625-629, 1991a.

Pachowicz, P.W. and Bala, J, “Advancing Texture Recognition through Machine Leaming and
Concept Optimization”, Reports of Machine Learning and Inference Laboratory, Center for
Artificial Intelligence, George Mason University, 1991b (also submitted to [EEE PAMI).

Pagallo, G. and Haussler, D, “Boolean Feature Discovery in Empirical Learning,” Machine
Learning, Vol. 5, pp. 71-99, 1990.

Plotkin, G.D, “A Note on Inductive Generalization,” In Meltzer, B. and Michie, D. (Eds.)
Machine Intelligence 5, Edinburgh University Press, Edinburgh, pp. 153-163, 1970.

Reinke, R.E., “Knowledge Acquisition and Refinement Tools for the ADVISE Meta-expert
System,” Master’s Thesis, University of Illinois, 1984.

Spears, W.M. and Gordon, D.F, “Adaptive Strategy Selection for Concept Leaming,”
Proceedings of the First International Workshop on Multistrategy Learning, Harpers Ferry WV,
pp. 231-246, November 1991.

Stepp, R, “The Uniclass Inductive Program AQ7UNI1: Program Implementation and User’s
Guide,” Report No. 949, Department of CS, University of Illinois, Urbana, July, 1979.

Thrun, S.B, Mitchell, T. and Cheng, J. (Eds.), “The MONKs' Problems: A Performance
Comparison of Different Learning Algorithms,” Technical Report CMU-CS-91-197, Carnegie
Mellon University, October 1991.

Vafaie, H. and De Jong, K, “Improving the Performance of a Rule induction System Using
Genetic Algorithms,” Proceedings of the First International Workshop on Multistrategy Learning,
Harper’s Ferry WV, pp. 305-315, 1991.

Webb, G, “Leaming Disjunctive Class Descriptions by Least Generalization,” Deakin University
School of Computing and Mathematics Computing Series Report 5/92, Deakin University,
Geelong 3217, Australia, 1992.

Whitehall, B, Lu, S. and Steu]:;:}:, R.E, “CAQ: A Machine Leaming Tool for Engineering,”
International Journal for Artificial Intelligence in Engineering, Vol. 5, No. 4, 1990.

Wnek, J. and Michalski, R.S., “Hypothesis-driven Constructive Induction in AQ17: A Method
and Experiments,” Twelfth International Joint Conference on Artificial Intelligence, Sydney
Australia, August 1991.

Wnek, J., Sarma, J., Wahab, A. and Michalski, R.S., “Comparing Leaming Paradigms via
Diagrammatic Visualization,” Methodologies for Intelligent Systems, 5, Ras, Z.W., Zemankova,
M. and Emrich, M.L. (Eds.), North Holland, pp. 428-437, 1990.

Zhang, J. and Michalski, R.S., “Combining Symbolic and Numeric Representations in Learning
Flexible Concepts: the FCLS System”, in preparation.

i

27

and as such was a superset
the ATEST analyses of the
the event space, X

resented to us for the MONKSs’ Problems. In

d of the entire event space,
f the numeric results of

that were p
and C is the class to which the example is assigned.

x1x2x3x4x5%x6 > C
Training Data Set #1

The training set of examples for the first problem:

®
®

#

ition of the example in the lexicographic ordering of

the various programs.
where # is the posi

This has an effect on some o

APPENDIX: INPUT DATA FOR THE THREE MONKS’ PROBLEMS
lems, the testing set consiste

{head_shape = body_shape) or (Jacket color = red)

Below are the training and testing data sets
The examples are presented in the following format:

each of the prob!
rules discovered by
represents the value of the ith variable,

of the training set.

H»Dﬂ.u101011010&11111[[!11111[

]
AAAANAAARNAANAANAANNANNDNARAANNAN
.2222121.2_12211111222212112111211
B 0N e o et o et e) et O W e 0 T o W e O e S
1...4...‘31..._...22_11133311122333311113333
T b o e N e R R el R N R R e B s
P el L s e R R R R M N N T I B T B B R B B B Tt B B]
0o O R T O 6 0N 6 O 0N OR B O O £ BN 6N 6L 0T B 0 O 60N 00 BN N L en on
6%&27“..11 ..M7m351—28m2?mmmpti&ﬂ&ﬂ_t
—] £ 00 00 O o
SBEEER S PRI R R R R A

ot et v i e et et et e e et i et et et £ et D D D el et DD = DO

ANANAAAANAANANANANAAARNNANANNAARD

{ e S] i S i i A " e e |

|_1..233.1._33111123[2233312223112231
N . E e L L L Rl b R R R N R R B el
R Rl R Rl R s R s B s M T B B T B B B B T B e
PRt e R R e s R R B N N e M s Ml Bl e B i B R
%WW..WHMMmzm‘mﬁf&hm’3tlmmk&“ﬁ&wﬁmmmm&
0o g=f=g=gogai HOZ3QU88REERAS =

ﬂnuuﬂloﬁnulouﬂuulluﬂuuun.ﬂﬂﬂﬁ__uul
AANAANARAAAADNNANNAANANNANAANRDAN

n..-|_-...222...42121.112121221121212122[1
P T e Rl B L RN s R R B s e R s B
e e L L L L R R R B N B K BBt i o B
4]11[2221222222]1[[111112221212[
PRCR BT BN O] £ 0T BT 6N BT O 7L O) e et e et et e et o e el ol e e
it i et o et et v et et i et PP I I I I I IS
CHA NI HEE YIS aiERaEEREESEEsE
1111111111111111111.I.l...-...l-l.._.l._.l!.ll.l._l.
[=N =N -]
1.11llllluﬂﬂlﬁ_ﬂﬁ'_ﬁ.ﬂﬂ.ﬁﬂ_ﬂ_ﬂﬂ_ﬂﬂ.}._..._n—._)
e
.}).a.}.?}.?}}:)}})?h}}))}})}#.. x
a.}- " ' L} 1 i L] Ll L) " L] i) L] T 1 L) ' ¥ L] ! Ll L] R R
L e e L R R R R B R E e e R e
el e R T s R il L e
Lol o B g e Rt s B B B Mo Mol o B B B B R R
i A e R e e R R R Ha B e B R R WY
Ll S R N R W W B W W B B B R R B o I
L IR g — S M ek el e e
wa as G 65— oen g = 0l oD =+ —
Sﬁlzﬂmﬂ 455555“5“.&??333“%9”]1[1

Testing Data Set #1

i g vyt
AAANANADNDANA
— e e o e] e =
R RN s e N R
[M B B T B B T B]
(A RN R NN Nl R R e

e v e e e
et vt vt e e e e o] v e

nREFIIYITEES

ot e o e el e

AABARDADLNDR
s Bl BN N o o]
s B B Bl B
v el e e OO
Ol e
e
—
i
[aa]

11222

s e

36: 11222

HEREARAEH

35

gl g e e e el i o e e
ANAADRANANAN
w0 owed O e O e O e O
iR e i B R T
L N B I e B It B R
T el R R R
Tl R e R B B B
o g e el el i e el e
S a8 = goSdms

— e w p wd

— e
o e v

AAA
AnnARAAAATT

oF o=
s s el B o B R R
Ll n B B T s Bl]
et e e e o
—
—
e e e el B o E
s Bl U -

o0
(o]

.lluﬂ.ﬂ.ﬂD_UlT..U_...Uﬂ_.U.Uﬂ__.I.I_U_.U.U.U.U..U.l.lﬂ__.U.Uﬁ..ﬂﬂl._lnvnun_nunu_n.linﬂ_ﬂﬂﬂﬂllﬂ_ﬂuﬂ_ﬂﬂllﬂﬂﬂuuﬂ
NANNNOANNNNANADNANNAANRAANNNANNANANANANANARNANNANANNAANNANANANANAAAANAAANA
:21212.I.-.s_I.-.i.l.z.l21!!2&!21212.lzl.zl.z121214...1.1.1212]21212:2[21212121212I~2

Al Ko Bl g e e B KN R B N RN B W A T T e T I R . e L
Al el el el el N N R K M E N Bl N Nl R R R N e R N e e R R B s B

T e e e e v v e et el e e o v e v et e B P 0 O B 0 B B 6 0 0 0 0 0 B) 0 00 0 P v e e v v et e et e e e e e e
L B T T T T T T T T T T T T T T T T T I R T T B R N N R N R G R R R R R Rl e e B I
222222_?.2....211122122122222222222222222222212222211 o O B 6N 0N 0N 6N N 0N BN 6N BN 0N PN 6N o
SRR 3 5 E RPN EE S NS R PR R LR P S B RS
23 338458 GNAZ8EE RS RRRRNRRREGRnRRARRREREARRAS 2

NN =N=N-N-—-=N-=-T - == == I e R R R I R R R e e e e T E e e R E e R R o e [e R R L S [G S G G]
AANNNADNNANNDAANAANNANANAANANNNAANDNADNNANNANAANANNANANAANARNANANAADN
O e e B B e B e B B e e O e B et B e ot 0 e O e 08 e e 0 vt 0 et 0 el T ot T e 0 et 0 e T e B e O et O e O e O e O o 0
= A N W T e e I O T e e I I N T S e e I O N T T e S PP N T W e AP N T T o 0 T N S W e e 0 O R
Ll R e R Nl R N Rl N T R R Rl e B R i B B B B B s B L R N R R R R el R s Nl N NN NN
L Rl Bl el e lalole ol lal il el il i el e s N Nl N Rl NN R N NN e NN RN e NN Nl
il e e B B e B I e B e B B e B e B e e B e I B B B e B Ml B B o B B s N R e W N Nl N W W R N]
HEHAAN NN NN NN NN NN NN NN NN NN
St bt Rt e e b e e E b e b e ER R R R R R R R R R
EEEEREEERER R 2HER AAMAMMMMA NN AN HAAAANNEAEa9988

llﬂﬂ.ﬁﬂﬂﬁ]lﬂﬂuﬂaﬂﬂuﬂ_.I....ﬂun_u-.u-nunuﬂl.l.-u-ﬂﬂ-ﬂﬂﬂul.l.ﬂﬂﬂ-ﬂO.Ul.lﬂ-ﬂﬂﬂ.ﬂ.ﬂll.ﬂ-ﬂﬂ.ﬂﬂullﬂ.ﬂ.ﬂﬁ.ﬂ.ﬂ

AAAANANANANANANAANAAANDNAANANAANAANNANAAAANANANANNAANANNANNANANANANAAAD

(=R ==l == = = = o e
OO0 0 QmmOO0O 0O 0 OO mmO OO0 000 mmO 0D O0000Omem OO0 OO mmOOOOOOm™mmO A }}.ﬁ.}_‘v A
ARANAANANANANAAANANNAAAANANANANANANANAAAANANAAAAARAARAARARAAARRAA

[a Bl BN Rl e Rl o Bl
I._—Jl__2l-....._..212:.2t.......t..-.,.I._Z12121212I_Z1312]212]212]212!21212!23

Ll - S e e W W T

11223344111233441I.zz...:._.._.441121334411223344112233441121[11112222122
el e R N E N Nl T N L T R el N o o o o T T T Y
.I.I-.I.|_I.I-.I..l.l..I..I.-l.I.I.I.I.I-I.I..I.I.I-l1222222222222222222222122[113333333333333
L L L LG GG G e L L e L R L R s R s R e Ea N B R B N Es K B Ka B s a0 s T Tt
el el g el g el g g oyl pe] gl g gl g gl o el el oy o i e gl e el gl gl gl el e el o e i e e el e el el e e e] el o e e] i iy o s
P R - R Tt e T T T I T R N T T I T e e e

=]
(]

e e e e e e R e e R e R I I R I el el el B

AAAANAANANAAAARANNARNAANANRNANANNDR
.1.1|._4..|.212[21313:21212I21212121212
e i i R Ea Rl B el B BT B b B Bt T il
33333333111111112222222233333333
e s L L s I R R R R R e K R e R N R N R R R o Rl
PR e e R e L B o R W T B TR T T T R B R R R R
P Ll s i Rl e o R e R R R N R W B R B B o R et Bt B R
L L L L PR P EEEF R EEEEEEEEETS
m = ot T T ul‘.d.ﬂﬂ 4“ =+ 4“
-ll.ﬂDﬂUﬂ0.].1uunuﬂnu.]sll.l_ll.ill..lllll.lll
AAAAANAANNANANANNANDNAANANNANNANANA
1212121212121-1._]_7.laﬁlzlzlzlqﬁlzlzlﬂﬁ
e il e L R R N N N R et K R T B
MMM EA AR A MR~ e S SN
22:n&222222221212[1111111111111[1
22222222222222223333333333333333
333....-3333333333333333333333333333
.mlﬁ:kﬁﬁﬂ::M¥2m BEEER DS 3:5%%&:%
R =
EEREER R REaRREABEREE2220252R8E

e R L B Ea R K R T R N T R Rl el
T I e e e i s B B Bl B o
22211222211222221222222222222222
B R BT B DT ER ETL O 0N BN O R BN N 6N 00 0T 0T O 6T BN ON) 0T 0N 0 O 0 6 O e e
FEEEREEEE R SRRV S d-p S0 3o
™ o o o 60 N e i R R R e T R o B R Rt B L R

ARADNANAANANADAANANANAANAANANALAA

330: 31231
331: 31232
332 31232
333 31233
334: 31233
335 31234
336: 31234

Training Data Set #2

=== =Rl E=-R=R=-E-Rak-Eok=N=R R RN =]

AAARNAAAAANANAADNANNANANARAR
R ol L s Bkl s B B s B Il o o s Bl o B o |
F eI =SS e RS = =
il e s B N NN RN e B B Bt T o
el ls lels R R R R R R R e R e R R o]
e R R N N N RN N AWl T R T R L R B B R]
sl el s R R s N N e W N N NN Mol RNl s B
HﬂmﬁHdM&%E&&MR2MM3tM&MM&%Wﬂ
AAARHHAREHARASRA A9da9 a8aR

ANANANARNAADNRNNBADDRARBAMANN

P e e) v] 0 0 B e e 0 e O e O 0 O O e D) e e e

[s Bl R e TG B s B B B R T it Tl o B]
el Rttt Al atats B H o N R T s B Bt]
)P P e e e e el kv O G0 0 0 0 O O8O D et e e e
el e R e kR Rl N Rl B B
e G L L R R L R R K R s N R R R K R R R B
EEREEEE R R TR E RS- R
ik Sl el . P e e - e e R e e R R 1o

six mttributes have their first value

m ot (D v vl) e D D2
B R aananARALAss TEEREARERAEAND
m. (I | ARl P I ey i e R s I R]
- el R R el ko Kl Bl R I R R R B R A R A R]
e B it B e T T R R s
m B i e R e B il il R
] e s R B B R e Y e R
. (R N B W e W B B B o B I o S R R e e g
w P I e R R I e i R e T g ald
ek ke e e . e e S o= D= -2
shrappassss gsg88E8SS2SRURER
1]
o
B
m.
eﬁauﬂnnﬂﬂﬂﬂuﬂﬂﬂlﬂluﬂlﬂlﬂﬂﬂlul
ot
SEaaa tANAAARAAARARAANNANAANNA
-
B e e i s o S NN NS
302111234241[3441211233411233
T e e R R R L
m il 2 s B Bl B W o I I e T i o o i
* wtll.ll_ll..ll_..l..l-ll_l..l1122222222212
hm.lla:...-.l.t..I.|..l|.l..1.]1|1|.|..l_1..1..T4..1_.l.l|.11
e - w4 s& ®E @8 EA T 1 gE gr S5 44 48 wE mE ww 44 &5 EE EE 2@ ww -
R =i R - ==] [=] [] oo
ME47lelilﬂﬁl3344“5ﬁwmﬁﬁﬁ%6ﬂm

SO~ 00 ~000~00
AANAANANANDDA

v [

el B B o RN o]
v 0N O e el PN
ek BN W N N BN
e B s e R Nl oo lel
LR NN RN R R]
o 0N BN N T 0N T BN PR
Wy = Ch -] P Ch =iy =
2288885359953

AABAAAAANANNANAR

= R = B e = A= == R R
AARANANARNAANANA

e e e e O N

el R il u i el R - B e I o)
[N B R s B s B B B O]
P s R r B En s [i g g e
O OR R BT N 0N e et el e e et e
o WA o0 W D 00w 00 & ol F o o &

g
RERE=R28858838388x

-l Rl R-N-F-F-N-N-N-R-R - Ny - - Nl - =R R =R =R =R =R =R Rl = ==
AAAAANAANANAAAANANAANANAAAARNANANNANNARNANAANANAD
e T e 0 e e B e P e 0 e] e B e) e] e) e 0 et B e O e et B e B] e e
22334‘1122334411223344I122334‘11𸿡[223344

IDIDDDDUﬂﬂﬂﬂﬂﬂﬂlﬂlﬂIﬂﬂﬂlﬂ]ﬂlDﬂﬂlﬂlﬂlﬂllﬂlﬂlﬂﬂl
A anfAAANAANAANRAAANAAARANANNANANRARANANARA
o P g o e 0t 0 e 0t 0 0 0t O v et 0 e B B e B O 0 B B 8

it e A Rl L Tl e Rkt Ko Rl i BBl s K B e N e e K B
LT A 2 A B R R B B B R R R R R il el R R o s B N B s B]
L e e s e e e e e e ettt i Es R A R N N N N N W N e la e e e
P i e B B R R T R T R R R R L R R
[B n B a o I T T o R S S R I g e R R]

R
ah hp Rk e e e O T) 5 S - e A e - -l N B - L g
St i LRt EEEE R R R R R R
R s s S - s e e e - T - el L e QR R RS S

OO0 0000000~ 0 N0~ 000NN OmOD OO OO " 0m0 =00 —~—~O
ADAAANAARAARNRAANDANDNAARANARARRADNARNARAMADARDANNDA
1212121211_1-..._12_.[.212[2[21212::121312[212121212[2
L e A T e R R e Nl B e Rl e R R R e i By
1.31.1..11.11112224—112233333333]]111111222222123333
0 P et it gt i e gt e et e i ot et et et o ot vt et vt et P P I CA I P I O G S S NN
G GG s L e L s R R R R N R R R R R N Ha R Rl B N Bl N B e Nl el
11Il11l-l...1111111:11'[1[1[1[111111111[1!‘1111]111
T LT T TRE LR CRU T LRe T Iy R d R B A SRS A i & B ok o=
”ﬂwmﬂﬂﬂ 5555”“5&&&.&%“@“ ﬂﬂﬁﬂ???ﬂrﬂissamuﬂssxsmgm

ﬂﬂnﬂﬂﬂﬂﬂﬂﬂﬂﬂDﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬁQQQDDODDIGlﬂlnﬂolﬂl
AR AasAAATIRARRANARANNARAAARARRARAAAAARARAANNY
o e LS R P R R g X e X g g g e e el s Rl B R s KR RN e R
inlle Bkl Malis Bl B ey i B I T RN N N e B Mo BT e il o B Bt o
el K B T i TP P P A N L, e s K N B N R R T
e i i T . o R e S S R T Tt T B o I ot T e B I O]
o e e e oy ot et v e i e e el e et e e e e e el v el e e e e e e e e el e el e e e e

Ll R B B B I o T o PR R S S R R e g e T e e R R R R N R
e e e el gl wel e - . s 4 wm wm ma
__::&Lli.mi&h&:ﬂhtux.i&ﬁ&&&htkk:&hﬂ?...L23 i o
]13456.?3.9111111111” RNl GG I k] eyl =+ = b

31

D_ouuﬂnvIDDDOUﬂ.n.ﬂnﬂﬁ.lﬂ.l.u_.l_ﬂllﬂ_l.ﬂulﬂuﬂ_l.l.ul.ﬂlauﬂllnu.l.ulﬂlﬂﬁﬂﬂﬂﬂﬂlﬂﬂﬂﬂnﬂ.ﬂ
AAAAANANNARAAARAAAAANANNNAANAAANANNANARAANNARNRNANRRDNNANDNNADANLAN
12121....41.2l..;..l21.2]_21.Zl.q..]1121212121.21_.,.._1_212]1111.2.!1121212[212121212

LR R H W
...&2.1.222333333331..1111111&2212222133333333]1111111!221112233333333
222..1.21..?.22222221l1.1..|.|..lI..I1..1_l.l.l.l1.1..l.:.]_11_l.l?.22222222222222112223221
222......2.....2222222233333..:1..333331_3_33333333_33333333333333333333333333
33
113&5&?390[2::16?39Mt13 i%hﬂ”@lﬁ%%i%.MmDLtkk>BQ:IZ + m%&:wll
SRS EE PR CE P FEERR R SR I L R I FEERR AR R R LR LR BR LR RS

ﬂl.ﬂlﬂﬂﬁlﬂ_lﬂlﬂl..n..Uln._l__u_ﬂ1.l.Ulﬂ-..ﬂ_.Dn_..u_1ﬂ._.lﬂt..nu_llDlﬂ.lﬂ.ﬂl]ﬂlﬂlﬂﬂllﬂ_lﬂlﬂlﬂ
AAAAAAANAANNNAAAAAANANANANANAANAAARAANRDNANARDANAANNARARANARDANAARD
121212121112121111—121212121112[2!.!]212[2[2]2111212121212121212
33441I.a..2334.4l12233..4.4....[22334411123344!1123344!]2233441121334411

33331.ll.ll..ll...l...,__2227..22131.__333333.[I.l.._..l......llz.?.zz2122333333331111111122
lll]!a‘ﬂﬁa&ﬁ&!q&!i12222222222211211111..l.l|.|.......1.-1.1.[11111111112221222222
1..1l.ll1..:.I.ll.l.i.l1..l.l.l....l11...[11..1111212222.....2_214.-222221122232212?_2221212
.1._333333333333333333333331._333333_33333333......3333333333333333333333
.&liSliﬁ?BgmLﬁ::HET390h2$45673mm113m56?3mﬂtk3 ME?HPWtZkMthWM&
— o (= B S ExExEs K] [a e B st Mok Mt I i = -+ W W o
EERRR SR R ERREEE R EERREC R R R S S S E bR S EEREEREEERN PR E R R

ARAAAAAAARAAANAANNANAANNAANANANNAANAAARNARRANNAARAANAANRARANADARAARAR
.IT..I.ﬁ,_..lu:._l2]1[2121212121212[21...b.l..ﬂ.l.2.12]212[212]212121212121212121.2

44[122334411123344.I._.l....r.233..441.[2233441-1.-...-.4.3344[1223344[12233441112
1111222222333333331'11111122222_222333.3.3333..[11.11111212222123333
1_.l.l_.1]-|.|._I.l..l..l..l111..I...I..l_22..1.2.7.....,_.2122222212222222221—11]1.[..[1.1.-111..[[1...1.1..1.[]-
331[111.l..l.-lli..lll..-l-ll.l.lll]
n)-1122-.r«..}.2122221222222222222222222122222222233333333333333333333
SN AR YU RS NN E NIRRT ARRANARAARRRRAERRE

_n__.j.]ﬂ__lﬂ..lﬂn__U_U1.01.01_U1lﬁlﬂ.lﬂ_ﬂilﬂ.lﬂlﬂﬂllﬂlﬂiﬂ]ﬂ.ﬂﬂﬂﬂﬂﬂlﬂﬂﬂﬂ.ﬂ_ﬂ_ﬂ_ﬂﬂﬂiﬁl

AAAAMAANAANANAANNANAAAANAANANANDNAANANNARAANANAARANANDANANRANARA
.l.ﬂ.._I..T.|...-..A.I.nr.12-1.....«1...L12.....2.1..)u1212111212.12111&21...&I.2121212]212121212121211
1[223344112....-33441122334411223344112233441121334411123344112233
33333333[1.1?.._.||.112222222233333333111111..[11232222.«&333333331111[[
2221«112211111]111[‘1].I.|.|.|.1..-|.11|.I.l..7—222.}-22222221222221222221_I.I..l......l.
1_1.[lll.I..I.....22-...22.222121_......2212222222222222...,__.222222221122222212333333
222121:2221222222222222222221222212212222122222212222211222222
eSS = 5&73..Mk..mwmmmm _ulzn.........u‘..._u.&q....__nnx&.u..mmm&ﬁ&mﬁktkki&ﬂ&mmll3m“M6

IR [Ex B ks o en oo ~ = -+
£222252053885838838 REEERERaRAR~-NNNNRANNTS0RRNAROINNAIIANES

32

Tralning Data Set #3

The training set of examples for the third problem with noisy data:

(jacket_color is greem and holding s swerd) or

(jacket color Is not blue and body _shape ls not octagom)

U.Il.ﬂ_l.lolllllllnllﬂ._ﬂ_ﬂﬂ_ﬂ_ﬂﬂunuuu
X ARNANNANNANNANNNANNANANAN

NN === =SS NNAn N
e Ne N N NN el N el N N NN R e R e N N NNl
et = =S AN NN AT A A
R R B T T T T T T T T T T T T T R T T R T o

LR EEELFFEFEEEEEEEELELE
SRS ERSSS sEREER8285535855098¢

lﬁ.l.l..u..UDllllﬂlﬂﬂ.ﬂﬂ.ﬂ.ﬂﬂ_ﬂﬂﬂ_ﬂﬂﬂlliﬂl
AANANNANNADAANNDADADNARNDANNDANA

2I.I....I|.2...622121!1122]1211211211112
L Rl N i i Bl G R Tl e L T B Tl B el B e]

e e N Rl el B R R E N B W N W N e N Wl I I B o]
el R B B e BN R e e e B M W B o B R
HAENANNMNANNNNNAMA R AR RN
CA Al A O A I I I et e eSS
..13.4ﬁ&.ﬁﬂMﬂ.S&lﬂﬂhﬁ&Lﬁ&llﬂihlwm
4 =] b=l el el
RERRRA~ANNANSIQNAS 8EEARRSRRA

Gﬂﬂ_ﬂunuunnnolluullllnlo.llu

L=
A AAAANANANANNANANDNANNAANAAANADNA
e .12111121122112[2[222[2[222
Ll i R R i T I T o I T
L Bl B B o e a T QU e b X R g X g
LB o B e s B B R L B B e e I i I I
LT T T N D e L 5
LR R T 2 B L ey T N T
g g g,
T = TRTTIreaey P
] mw“Bahﬂﬂﬂﬂ“%ﬂﬁ%ﬂfiﬁﬁﬁﬁ?ﬂﬂ%m

— e D e D D e v vt e e e) e e e e ek) e D e e
— e 3 O e

AARAAAAAAARAAANAAARANMRAAARARNAAA
})._J_.}.}»ﬂf_ ' i i ¥ i L] 1 " [L] L) L] ¥ L} L) i LI L)
ekt Pl Ol T O OE e 0 e T e O e et] e e B B B e B e e
R R el S R R R R R N R
bl i R R N e Rl L e Ll el R R R R LR b L Rt s s
Ll i R s B s Rl B o e e e e e R T R R K s |
L e [R R e R B R B s R R R R R R R N o]
Lo T T il e R e e N e e R
e i

R AR) et O A AD O R G e WD
Gndecs S S USSR N RSP EREY

Testing Data Set #3

el alakalai-R= R oI = =T I I e o
DAANANANADNAANNANNNAANNANA
v] vt O w00 vt £ v] e Ol e B vl P e O e B o O e
el R R i el ol BT I o T
v el e ol oy e e (OO NN NN NN
CATEICA DA I I I I e A 0 e 0T
ez Ee Rl R Ealas R Es Rl R la o B W I I B]
P g e ped e gl g il g g el g g gy g gy)y
e o L D Sl e L
RN EE R s fgYoEEEasssigZeyR

e e e e O D e v v e v v (O D v e e e el e D D

ANNANNANNANAANANDAADNANAA

b
e Y CL T O R e e OO R e el OO N
ke R R N N K e B No e M Wl Nl]

el]

2

1

2

2

2

2

2

2

2

2

2

2
?ﬂ 1213
T: 12134
72: 12134

!i!ll!ﬂuilllllﬂulllllluo
AANAANNNANNANANANANADNANAD

i L S,
s Bl el Il s N e Rl R Rl RN N R]
e B NN R s R RN B s B R R B -
el et s e B B N B I o B R]
el e N N el e N R N N e N N N N N N N R NN N]
et e e e e v v et v el e vt e g v e g vl el et
[e s L e R R e e e

i W& = oo o o d....m....
NENEEEENR REREReTdgYIses
e N~ e ey _
P -]
#}}}}}?}}?)_}}}}
pé:*}}#}} i Eoaoa L] [l [] i ¥ ¥ ¥ L] '
3 5 el B [S R R R R S
E Rl s R R R e e R s]
el o el B N R R R B Rl R b]

i e e wd

33

i ot et i O vt et et e et et (D) D e el i el et DD

[=] .I.D_H_.Il-..l_.ll.ﬂ_nuii1111001]111100[1111100
ANAANANAANAANANAAAAAANNANANAARARNAAANARANAANRAANAARNRAANDANANARAARNR
11.l21..._a_!......t-ﬁ..I.A.sI.2.._.2_121_.._o]_..f.121211_l.z.l212I._Zl.-.ﬁi.ﬂ.111212121112121211121212
l._.......a..-_..__._344I.I.23334411..2..5.}34_4.l1.2-.,.3344.[I.22_3.3_4.4112133441122334411213344
.1]..[1!.1..[[321«2-.......-2233333333[1_1..1.1_1.[122222222333333331111[[[122222232
111.I.I-.I__.T......._.I._.I._.Il.1_......_111..1.|..1.I._.l.1..1..__..;...n-..a22222222222.22222221121[111111[1111111
1...I..I..I._1.111.11!..+-.1-|..l.lT..I.l|-|_1.....I..I._.Il_I_.1.].l_.l..l|.|..l_11.]._.l1..l1111111]1221222212122222
33.._....33333333333333333333333__331._3333333333333333333333333333333.{.3
e e ol - [1 i
Tttt EE bt LR R R P EEFEE PR P EEEEREEEEEEEE S SR LR R R EEE

I..n.._l__.l_l.ln_.u.l.l.I.I.I..lﬂnuD.U._Uﬂ..]10“000000“00“000ﬂﬂunooU.I...._D_U_.ﬂﬂvﬂ._ﬂ_ﬂn.DUU_ﬂnunvD_UUﬁ.
AANAAARAARAAAAAAAAARAARAAANAANAAARNANNANANAAANNANANAANANRRARRAARARA

h

1112121211111211121211!7—1112121112121212[2121212!211_12121111—1213
11213344ll22334411123344.|.|L11334.411223344112233‘411223344112!3344
2222122233333_31__3|........l.llI.]_2222222233333333111111112222122233333333
22222222212«4212211...l.ll.1..]_.l.l1.1.1...|.I.I.I.I.1.l.I.Il...1_212222212112222222222222
27—22211222222222333333313333333_...1_3333333_..1___.J333333333333333333333333
_.la22...#222224{22222222122..1_1«:—222221222212222ﬂb222122222222222222222222
H..TSHWRZEQiMh&EWhEuEMﬁMﬁE901234.__...m_..rE_mm1EMMS&«H&M&kZHM&mmsm.UlimmS%TE
zmMunznuﬂnBHﬂ NOA3aa333333373934a393449 38 558835 RAERRERERAER HE88

.l.lI.1..Ilﬂ.ﬂ]1.1.1._I..l.unu-..l_.l.ll-..ﬂﬂ.l|.l..11l.U.n._l1..I..lll.nun_llllll.ﬂ..ﬂllllllﬂﬁ.llllllﬂ.ﬂ.

AAAAARNAAAANNAANNANANNANARNAANAAAANARNNANANRANANRDAANAARNAARANDARARARDA

{ i S

l..ﬂl.__unI.I1-61..2.1_2_I._Z1212121..4.!21_21..)-[21...4111.2111212121212121212[2]112[212
11223344112233.4&1.1.2...4.33.4._41.12233_44112133441122334411223344[1123344
333333331..11111112222122233333333_.|.1._I..]_lI.l.I.222222223333333311[11111
.l..l!..111.1-1222224&222222221....a....-_.-..222222._I._..I..I._.Il_.......l.l.111111111111111[22222222
l.-l..l.l.!...l...l..ll..l._I..Ip.-..111[1]1111111[111‘112221....-27.22224&2222122222212222122
21.1-222442122221222222222212222—-&222221222-r.222222212222221222222222
I = e s 2t T e TR PR T AT S T L TR s sx gx +x s i R TP T TS U LT L L TR
pr
L L L LR EE R EEEE EEEEEEEEEEEE R EE R EEEREEEEEEEEERRR

Dllﬂﬂﬂﬂﬂﬂﬂunnoﬁﬂﬂﬂﬂﬁﬂnﬂﬂﬂliﬁuﬂﬂﬂﬂn000000DOGDDlllllluﬂlllllIUO
é::aaaaaa¢aaa#¢¢¢¢a¢¢¢+¢a¢a¢¢¢¢a¢¢¢¢¢¢++¢+¢¢+¢¢¢aa¢¢¢¢¢¢¢a¢¢¢¢¢$
.2121211121112[2121212121111121212[212121212121212111212111212

1
2

1
2
3
3
4
4
1

1
2
2
3
3
4
4
1

1
2
2
3
3
4
4
1
1
2
]
3
3
4
4
1

1
2
2
3
3
4
4
1

% e Tl e el s B B - U R s i T
.]__1..Al..l.I..I.i..n.‘222222233_.i.1..1.._-._.._33I_.l..l1_..I._.l.l1212222...,._.J.33333333[1111[1122322222
.l!....._.l.ll.i..I..I..l.l..l1..1.......l.l.l!...111._[1_2222222122221222222221221[1111]11[11111[
11133311]111[111[1111]
1—1}311111111111111[1111!1111111.]_I.al.l...n-l.lnll..l..1111[1111222222222221222
v gl

- — - —
7mmwmmmmmmmmmmuuumumnmwmznnunxmnmm3nuuﬁwmnwwauuaﬁmuuwmsuﬂnﬁmnﬂ»m
o Oh |......._I._.I-_I.l....|.l_l....l.l-.llll..-l..l._l.l-ll.l.ll...ra.l.l.I.l-l..lil..l.l.-...?l]l.ll.l..l111[11.!.111111:111111..

—-—ooooooooOLooooooooo
)’-}?3}.}.3)?.#})35_?)#»._’#

427: 3323
428: 3323
429: 3323
430: 3323

[—N—R-—N - -~ — = = = =]
ANNAANNANANRNANAANAN

—_ e DO - S D000 0O
ANAAAANNNANNNANNANAAD

= e e e O e O O v O e e =

03 03 08 0N T N 0N T O O O] v e e v e v e e
s EsBsBeRa Bl B Ea - e o B
L B B N B B T e R B o B T T R R Tt B o
L T T T T T T T T T B T T R T T
e - ﬁﬂmﬂﬂwlm
)

ERERREREERHRRERREE2R
e e e e e D)) e e e o e (0 e e e e
AANNANARANDNAAAAAAAAAR
— e O e B e e e) e 0 = 0 e B e
ke N Rl ot e o Rl T S i B
O 0P O OF OF DT T [P e et el el el e e DN
g et et gt oy e O P P I I S
R R R R Rl e R e R R R
i R Rt B R R R R T BT B B B B o]
bl ..iﬂﬁ&%ﬂh!ﬁ%ﬁﬂ?&gﬁ“hk
v W W A W DD DD WO DD

