4 Dempster-Shafer Theory

4.1 Introduction

Dempster-Shafer theory (DS theory), also known as evidence theory or the-
ory of belief functions, is a mathematical theory of evidence and plausible
reasoning. The theory has been developed by Glenn Shafer based on earlier
work of Arthur Dempster. Already in the early eighties the theory received
much attention as a promising theory for the handling of uncertain infor-
mation in expert systems.

The formalism of DS has several interpretations. Dempster’s model, in
which belief functions are defined by means of multivalued mappings, is
treated in the chapter on generalised probability theory. In this chapter, we
concentrate on Shafer’s interpretation of the formalism given in his book A
Mathematical Theory of Evidence. This book contains most of the material
of this chapter (and much more).

As a theory of evidence, DS theory has some advantages over probability
theory. Important advantages are the ease with which evidence of different
levels of abstraction can be represented and the possibility of discriminating
between uncertainty and ignorance. However, the main attraction of DS
theory is the availability of a rule to combine the effect of different bodies
of evidence, namely Dempster’s combination rule.

The lack of a combination rule in probability theory is an important
source of the combinatorial problems one encountered when applying prob-
ability theory to reasoning with uncertainty in knowledge-based systems.
(Cf. chapter 1.)

Dempster’s rule is in fact the main instrument of DS theory. But the
justification of this rule turns out to be problematic, which makes the whole
theory suspect from a theoretical point of view. Still, DS theory is considered
to be a serious alternative to probability theory by quite a few researchers
in both theoretical and applied Al

After introducing the terminology of DS theory, Dempster’s rule is dis-
cussed at length.

4.2 Basic Terminology

DS theory has its own (extensive) terminology, partly because DS theory
contains many new notions, partly because well-known notions are given a
new name. In the context of DS theory, a sample space is called a frame of
discernment, or simply frame. As before, we assume the frames to be finite.
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Partial belief concerning the events of a frame € is represented by a belief
function over Q. As before, belief functions are co-monotone capacities, but
in DS theory they are given an intuitively appealing interpretation via mass
functions.

Definition 4.2.1 A mass function, or basic probability assignment (bpa),
over a frame Q is a function m : 2% — [0,1] such that the following two
conditions hold.

m(0) = 0. (60)
> m(A)=1 (61)
ACQ

The quantity m(A) is a measure of the belief that is assigned to ezactly
the set A (and not to any proper subset of A). If m(A) = 0.4, then a 40%
portion of one’s total belief is assigned to exactly A. Equation (61) formalises
the convention that one’s total belief has measure one, and equation (60)
reflects the requirement that none of the belief of a rational agent is assigned
to the impossible event.

A measure of the (total) belief in A should also take into account the
measures of belief assigned to more specific propositions, i.e., to subsets of A.
For this purpose belief functions induced by mass functions are introduced.

Definition 4.2.2 Let m be a mass function over a frame Q. The belief
function Bel induced by m s defined as follows.

For every A C Q, Bel(A) = Z m(B). (62)
BCA

Example 4.2.1 (The Safecracker) Investigating the theft of some im-
portant documents from a safe, Sherlock Holmes comes up with the following
two clues.

1. Examination of the safe suggests, with a high degree of certainty, say
70%, that the safecracker was left-handed.

2. Since the door giving entrance to the room with the safe has not been
forced, it can be concluded, again with a high degree of certainty, say
80%, that it was an “inside job”.
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Consider the first clue, and notice that it gives no support whatsoever
to the hypothesis that the safecracker was right-handed, it does not imply
with absolute certainty that the safecracker was left-handed, and it does
not point to any particular left-handed individual. The representation of
evidence in DS theory does justice to all these points.

Let @ = {& : z is a possible suspect} be the frame consisting of the
possible safecrackers. (We assume that exactly one of them is the actual
safecracker.) Let L = {# € Q : x is left-handed}. Then the first clue is
represented by the mass function my over Q given by my(L) = 0.7 and
mq () = 0.3. (It automatically follows that zero mass is assigned to sets
other than L and Q.)

The belief function Bel; induced by mq is given as follows.

1 ifA=0
Beli(A)={ 07 fLCA#Q

0 otherwise.

Thus the belief based on the first clue in the proposition that the safecracker
was left-handed measures 0.7 on a scale of 0 to 1, whereas both the propo-
sition that the safecracker was right-handed and the proposition that John
“Lefty” Jones is the safecracker are assigned a zero measure of belief.

The class of belief functions induced by mass functions coincides with
the previously introduced class of belief functions as co-monotone capacities.

Proposition 4.2.1 Bel is a belief function over Q iff Bel is the belief func-
tion induced by some mass function m over §}.

Proposition 4.2.2 If Bel is a belief function over §, then there is a unique
mass function m over § such that Bel is the belief function induced by m.
This mass function is given by the following equation.

For all AC Q, m(A)= Y (-1)"\Bl. Bel(B). (63)
BCA

Bel(A) is a measure of the (total) belief that is certainly assigned to A.
There may also be belief that could possibly be assigned to A, namely belief
assigned to some B which is consistent with A. Plausibility functions take
also this belief into account.
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Definition 4.2.3 Let m be a mass function over a frame Q. The plausibil-
ity function Pl induced by m is defined as follows.

For every A CQ, Pl(A) = Z m(B). (64)
ANB#0

PI(A)is ameasure of the belief which is not (yet) assigned to propositions
which imply the falsity of A. It is easy to check that Pl and Bel are dual.
Since, by proposition 4.2.2, it is also possible to recover from Bel its unique
underlying mass function m, the above defined functions m, Bel, Pl are
interdefinable.

To this list of interdefinable functions one can add yet another function,
namely the commonality function, defined as follows.

Definition 4.2.4 Let m be a mass function over a frame Q. The common-
ality function @ induced by m is defined as follows.

For every AC Q, Q(A)= > m(B). (65)
ACBCQ

Q(A) can be understood as a measure of the belief which can move to
every element of A. Commonality functions are sometimes used to simplify
the expression and verification of properties of belief functions.

We introduce some further notions. A subset A of a frame 2 is called
a focal element of a belief function Bel over Q iff m(A) > 0. (Here it is
assumed to be understood that the m denotes the mass function associated
with Bel. Similar assumptions will be made frequently.) The union of all
focal elements of a belief function is called its core.

The complete information about the measure of belief in A can be rep-
resented by the belief interval [Bel(A), PI(A)], where PI(A) — Bel(A) is a
natural expression of the ignorance concerning A. Complete ignorance with
respect to a frame € is represented by the vacuous belief function over €2,
which is the belief function induced by the mass function m defined by
m() =1 and for all A C Q,m(A)=0.

For any subset A of a frame 2, we write 14 for the mass function which
assigns mass 1 to the set A (and zero mass to all other events). We will use
the same notation for the associated belief function, plausibility function, et
cetera, and let the context determine which function is meant. Thus, the
vacuous belief function over 2 can be denoted by 1q.

Probability functions over a frame are a special kind of belief functions.
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Definition 4.2.5 A belief function Bel over a frame € is called a Bayesian
belief function iff Bel is a probability function over §1.

The following proposition lists several characterisations of Bayesian belief
functions.

Proposition 4.2.3 Let Bel be a belief function over a frame Q. The fol-
lowing are equivalent.

1. Bel is Bayesian.
2. Bel = Pl.
All the focal elements of Bel are singletons.

For every A C Q, if Q(A) > 0, then A is a singleton.

EAR

For every A C Q, Bel(A)+ Bel(A) = 1.

It is tempting to consider Bel(A), respectively Pl(A), as lower, respec-
tively upper, bound of the “true” probability of A. Although this interpre-
tation is in accordance with the original intention of Arthur Dempster, it is
explicitly rejected by Glenn Shafer. In his view, DS theory is pre-eminently
suited for situations in which there is not sufficient evidence available to
speak of the true probabilities of all relevant propositions.

In Dempster’s model, as described in chapter 3, the belief and plausibility
functions are explicitly linked to a probability function over a frame (the
original information level) which is related to the frame representing the
target information level. In this chapter, the belief functions, mass functions,
et cetera, have been introduced without referring to probability theory, just
as in Shafer’s book. Only the target information level is mentioned, the
original information level is not even alluded to.

It should be mentioned that in later publications Shafer comes quite close
to Dempster’s model. Presently, the Transferable Belief Model of Philippe
Smets is probably the best developed theory which takes Shafer’s original
interpretation serious.

To end this section, we show how mass functions can be introduced in
Dempster’s model, and we prove that not every belief function over € is an
inner measure extension over . (This fact was already mentioned, but not
proved, in chapter 3).
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Definition 4.2.6 Let (0,29, P) be a probability space, Q is a sample space,
and T : © — 2\{0}. The mass function mr is defined as follows.

For every AC Q,mr(A) = P({0 € ©:T(0) = A}). (66)

Proposition 4.2.4 Let Bel be a belief function over Q. If Bel is an inner
measure extension, then its focal elements are pairwise disjoint.

Proof. Assume that Bel = P, for some P € PROB(X, Q). Let © be a basis
of 3. Then Bel = P{,,,,, where I is ide and P’ € PROB(0) is defined by
P'({6}) = P(0). (Cf. proposition 3.2.3.) The focal elements of Bel are the
elements of ©, which are pairwise disjoint. |

It follows that the belief function Bel; of example 4.2.1 is not an inner
measure extension.

Exercise 4.2.1 Give the plausibility function Ply induced by mq of example
4.2.1.

Exercise 4.2.2 Let m be a mass function over  and let Bel and P be its
associated belief and plausibility function. Show that Bel and Pl are dual
functions.

Exercise 4.2.3 Formalise the second clue of example 4.2.1, by giving both
the relevant mass function and the induced belief function.

Exercise 4.2.4 Let Pl be a plausibility function over Q. Show that for any
A, BCQ,PI(AUB) < PI(A)+ PI(B).

Exercise 4.2.5 Give an example which shows that the following inequality
does not hold.
Bel(AU B) < Bel(A) 4+ Bel(B).

Exercise 4.2.6 Give an example which shows that the following inequality
does not hold.
Bel(AU B) > Bel(A)+ Bel(B).

Exercise 4.2.7 Prove proposition 4.2.3.

Exercise 4.2.8 Show that mp of definition 4.2.6 is a mass function.
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4.3 Dempster’s Combination Rule

Consider example 4.2.1. There are two pieces of evidence which both can
be represented by means of a belief function. In this section we discuss a
rule, introduced by Dempster, for combining two belief functions into a new
belief function which is supposed to represent the combined evidence.

Let us first discuss informally what the combined evidence in example
4.2.1 is. The first piece of evidence points (with degree 0.7) towards L, the
set of left-handed individuals, whereas the second clue points (with degree
0.8) towards I, the set of “insiders”. Taken together, the evidence should
therefore support to some degree that the safecracker was a left-handed
insider.

The support of L based on the first clue does not seem to be strengthened
or weakened by the second clue. Thus, based on both clues, a degree 0.7
of belief in L seems reasonable. Similarly, the combined evidence suggests
a degree 0.8 of belief in I. How much support does the combined evidence
give to L N 17 Surely less than 0.7 and 0.8. A reasonable answer might be
0.56 (the product of 0.7 and 0.8).

One can formulate the following rule. If the first piece of evidence is
represented by a mass function mq which assigns mass mq(A4) to A, and the
second piece of evidence is represented by mq which assigns mass my(B) to
B, then the combined evidence assigns mass m(A) - mq(B) to AN B.

Applying this rule to example 4.2.1 results in the following mass function
m as a representation of the combined evidence. m(LNI) = mq(L)-mo(l) =
0.56, m(L) = mqy(L) - me(Q) = 0.14, m(I) = mq(RQ) - me(L) = 0.24, and
m(Q) = my(Q) - ma(Q) = 0.06. Since Bel(L) = m(L)+ m(LNI) = 0.7,
the belief in L is not changed. Similarly for the belief in /. New is the
assignment of a degree 0.56 of belief in L N [.

To introduce Dempster’s combination rule in its full generality, let mq
and m9 be the mass functions of the belief functions Bel; and Bels with focal
elements Aq,..., A, and By,..., By, respectively. The masses assigned by
the mass functions can be visualised as segments of the unit interval, as
shown in figure 5.

Figure 6 shows how the two intervals of figure 5 can be orthogonally
combined to obtain a unit square representing the total mass assigned by
Beli & Bely, the combination of Bel; and Bely, where Bel; commits vertical
strips to its focal elements and Bel; horizontal ones.

Consider the intersection of the vertical strip representing the mass
mq(A;) assigned to A; and the horizontal strip representing the mass mgy(B;)
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mi(Ay) - mi(A;) mi(Ap)

Figure 5: Masses assigned by mq and mg.

mo \

1

ma(By)
mass
my(B;) ma(A;) - ma(B;j)
assigned to
AN B]‘

mg(Bl)

0 1 my

mq(Aq) mi(A;) mi(Ap)

Figure 6: Mass assignment according to Dempster’s rule.
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assigned to B;. This intersection represents mass assigned to both A; and
Bj, and thus to A;NB;. The mass represented by this intersection is assumed
to measure mq(A;) - ma(B;), i.e., the area of the rectangle.

A given subset A of Q2 may of course be the intersection of different pairs
A; and B;. Hence to obtain the total mass assigned to (exactly) A by the
combination of my and mg (notation my & my) we have to take the sum
(over ¢ and j) of all products mq(A4;) - mo(B;) such that A = A; N B;.

However, in this way some probability mass can be assigned to the empty
set, since there can be a focal element A; of m; and a focal element B; of m,
such that A; N B; = (. But then my & my would fail to be a mass function.

To solve this problem, all rectangles representing mass assigned to the
empty set are discarded and the measures of the remaining rectangles are
rescaled by dividing through the sum of all mq(A;) - mo(B;) such that A; N
B; # 0, provided this sum does not equal 0; otherwise we say that Bely and
Bel, are not combinable. Hence we arrive at the following definition.

Definition 4.3.1 Assume that Bel; and Bely are belief functions over € in-
duced by mass functions my and mq such that ZAmBﬂé@ mq(A4;) - ma(B;) #
0. The combination of Bely and Bely, by Dempster’s rule, is the belief func-
tion Beli & Bely induced by the mass function mq ® ms over , defined as
follows.

ifA=10

0
mi & ma(A) = § Lnam,mama(0mB)

(Ai)-m2(By)

(67)

mi
AinBﬂéw

The function Bely @ Bels is sometimes called the orthogonal sum of Bely
and Bely. The factor [3°4,~p,2p mi1(4;) - ma(B;)]7 is called the renormal-
ising constant of Bel; and Bel,. If ZAmBﬂé@ mq(4;) - mo(B;) = 0, then
Beli & Bels is undefined, and Bely and Bel, are called not combinable.

Proposition 4.3.1 Let Bel; and Bely be belief functions over ). The fol-
lowing are equivalent.

1. Bely @ Bely is undefined.

2. The cores of Bely and Bely, are disjoint.

3. Bely(A) =1 and Bely(A) =1, for some A C Q.
4. Q1(A)- Q4(A) =0, for all non-empty A C Q.
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The following proposition lists some properties of Dempster’s combina-
tion rule. First we introduce a useful notation.

x and y are defined, and z = y
T~y &, or
x and y are undefined

Proposition 4.3.2 Let Bely, Bely, and Bels be belief functions over €.
1. Bell © Belg ~ Belg © Bell.

2. Bell © (Belz © Belg) ~ (Bell © Belz) © Belg.

3. If Bely @& Bely is defined and Bely is Bayesian, then Bely & Bely is
also Bayesian.

4. Bell © 1Q = Bell.

It follows that the result of Dempster’s combination rule does not de-
pend on the order in which pieces of evidence are combined, since the rule
is commutative (first property above) and associative (second property).
The third property states that the combination of a belief function with a
Bayesian belief function is again Bayesian (provided the belief functions are
combinable). The fourth property states that combining with the vacuous
belief function does not change one’s degrees of belief.

To illustrate the use of commonality functions, we show how they sim-
plify the formulation of Dempster’s rule.

Proposition 4.3.3 Assume that Bely and Bely are combinable belief func-
tions over ), with commonality functions @y and )y, respectively. Let
k denote the renormalising constant of Bely and Bely. The commonality
function Q) & Q4 associated with the belief function Bely & Bely is given as
follows.

0 ifA=1(

G Q)= { E-Qi(A) Qa(d) f0#ACQ. (68)

An interesting special case of Dempster’s rule is obtained when one of
the belief functions to be combined is equal to 14, for some subset A of
the frame. Since the function 14 carries exactly the information that A is
the case, combining a belief function Bel with 14 is an intuitively appealing
representation of conditioning Bel on A. Therefore, this special case of
Dempster’s combination rule is called Dempster’s rule of conditioning.
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Proposition 4.3.4 Let Bel be a belief function over ) such that PI(A) > 0.

Bel(BU A) — Bel(A
For all BC Q , Bel & 14(B) = 6(1UB)1(A)6( ), (69)
— €

PI(BN A
Forall BCQ,Pl® 14(B) = 531(2))

We sometimes write Bel(-|gA) or Belga for the function Bel ®14. Similar
abbreviations are used for the plausibility function.

(70)

In chapter 3 we have seen that a belief function Bel over £ can be viewed
as (a special kind) of lower probability function and that Bel induces a set
of probability functions (Bel) (= {P € PROB(Q): Bel < P}). Dempster’s
rule of conditioning and definition 3.3.2 of conditioning the set (Bel) are not
compatible, since in general (Bel)4 and (Belg4) are not equal.

This incompatibility of Dempster’s rule with the interpretation of belief
functions as lower probability functions will come up again in the discussion
on the justification of DS theory in the next section.

Exercise 4.3.1 Let Q = {a,-a}. The mass functions m; and my over )
are given by my({a}) = 0.7, m1 () = 0.3, ma({a}) = 0.8 and my(Q2) = 0.2.

Describe the mass function my @ my and the belief function Bel; @& Bels.

Exercise 4.3.2 Let Q = {b,—b}. The mass functions my and my over )
are given by mq({b}) = 0.7, m1(Q) = 0.3, ma({-b}) = 0.8 and my(2) = 0.2.

Describe the mass function my @ my and the belief function Bel; @& Bels.

Exercise 4.3.3 Let Q@ = {1,2,3,4,5,6}. The mass functions my and mq
over § are given as follows. my({1,3,5}) = 0.4, m1({1,3}) = 0.3, m(Q) =
0.3, m2({1,2,3}) = 0.6 and ma({4,5,6}) = 0.4. Describe the mass function
my @ mq and the belief function Bely @ Bels.

Exercise 4.3.4 Prove proposition 4.3.1.

Exercise 4.3.5 Let Bely and Bely be belief functions over 2. Show that if
Beli @ Bel, is defined and Bely is Bayesian, then Bely ¢ Bels is also Bayesian.

Exercise 4.3.6 Let Bel be a belief functions over 2. Show that Bel @ 1q
is defined and that Bel @& 1g = Bel.

Exercise 4.3.7 Prove proposition 4.3.4.
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4.4 On the Justification of DS Theory

In the previous section, a number of properties of Dempster’s combination
rule are mentioned. An important property which is in general not valid
is idempotency (Bel @& Bel = Bel). It follows that Dempster’s rule is not
universally applicable.

Example 4.4.1 Consider the belief function Bel; representing the first
piece of evidence of example 4.2.1. Combining this piece of evidence with
itself should not change one’s degrees of belief in the proposition that the
safecracker is left-handed. However, Bel; & Bely(L) = 0.91 # 0.7 = Bely(L).

One can also argue against the universal validity of Dempster’s rule
by pointing out that the rule combines any pair of probability functions,
i.e., Bayesian belief functions, over £ into a combined probability function,
and Neapolitan’s result of chapter 1 (proposition 1.4.1) shows that such a
combination function does not exists.

In his A Mathematical Theory of Evidence Shafer mentions two require-
ments which have to be satisfied when Dempster’s rule is applied, namely
“that the belief functions to be combined are actually based on entirely
distinct bodies of evidence and that the frame of discernment discerns the
relevant interaction of these bodies of evidence”. (Glenn Shafer, A Mathe-
matical Theory of Evidence, p. 57.)

We first briefly discuss the second requirement, namely that the frame
has to discern the relevant interaction of the bodies of evidence. Notice
that the frame over which the evidence is evaluated is not determined in
advance. Agents which are interested in different questions, may choose
different frames.

Example 4.4.2 Consider example 4.2.1 of the Safecracker. One can imag-
ine that some insurance company is not as much interested in identifying the
individual responsible for cracking the safe as in finding out whether it was
an inside job or not. The people of this company might evaluate the evidence
over the frame {I, I} instead of the frame Q = {z : z is a possible suspect}
used in example 4.2.1. However, it turns out that Dempster’s rule does not
always admit such a coarsening of the frame.

Shafer’s requirement implies that the choice of a frame should not only
take into account the question one is interested in, but also the available
pieces of evidence and their possible interactions. The following example
illustrates the problems that can arise if the requirement is not satisfied.
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Example 4.4.3 Consider the example 4.2.1 of the Safecracker using the
frame ® = {L NI, LNTI}. Then both Bel; and Bely are vacuous, and so
is Bely & Belsy, in spite of the support which the two clues taken together
give to LN 1. The frame © cannot discern this support, because it can only
discern the support for L of the first clue and the support for I of the second
clue as support for @, and ©NO =0 # LN I.

Shafer has given an exact formulation of his requirement that frames
have to be sufficiently fine to discern the relevant interaction of the bodies
of evidence. We will not repeat this exact formulation. Instead, the reader
may assume from now on that frames satisfy this requirement.

The requirement that the belief functions to be combined have to be
based on entirely distinct bodies of evidence is formulated rather vaguely
and the meaning of this requirement has in fact never been made completely
clear. Below we will give an adequate formalisation of this requirement in
the context of Dempster’s model of belief functions.

The requirement obviously prohibits the use of Dempster’s rule to com-
bine a piece of evidence F with itself, or more generally, with some body of
evidence E’ which is implied by F. (If £ implies E’, then the evidence FE’
is already taken into account by the mass function representing F.)

A natural following case to be considered is that where, although F does
not (logically) imply E’, E considerably increases the probability of F’, i.e.,
P(FE'|E)> P(FE'). It might seem plausible that also in this case the effect
of the body of evidence E’ is (for a large part, at least) already taken into
account by the mass function representing F. This may suggest that the
rule should only be applied if the bodies of evidence are (probabilistically)
independent in the sense that P(E'N E’) = P(E)- P(L').

Indeed, Shafer’s requirement that the belief functions have to be based
on entirely distinct bodies of evidence pieces of evidence is often interpreted
in the literature as meaning that the pieces of evidence have to be proba-
bilistically independent. However, this interpretation is incorrect. In fact,
Neapolitan’s result of chapter 1 would still disqualify Dempster’s rule if only
probabilistic independence of the evidence would be required.

In DS theory, there is an other, more relevant concept of independence,
which we call DS-independence. Roughly speaking, bodies of evidence are
called DS-independent if the behaviour of their sources is probabilistically
independent. In the context of Dempster’s model, an exact definition of
the notion of DS-independence can be given. First we give an example to
illustrate the difference between the two notions of independence.
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Example 4.4.4 Consider some valve V' in a nuclear power station. V has
two possible states, namely “open” and “closed”. The information about the
state of the valve V available in the control room derives from two sensors
51 and S5. The sensor 57 functions reliably 90% of the time, and the sensor
Sy functions reliably 80% of the time. If a sensor does not function reliably,
then it indicates either that the valve is open or that the valve is closed, but
this indication is in no way causally related to the actual state of the valve.

Let r; : 5; is reliable, and let F; : 5; indicates that V is open. Suppose
both sensors indicate that V' is open. The available evidence Ey and Fj is
probabilistically independent iff P(Eq N Ey) = P(Ey) - P(Ey), whereas the
evidence is DS-independent iff vy and ry are probabilistically independent.

Let us formalise the evidence of the first sensor of the above example in
terms of Dempster’s model. The frame corresponding to the target infor-
mation level is Q@ = {o, -0}, where o : valve V' is open. The information
on the original information level concerning the sensor 57 is represented by
the sample space (0,291, P}, where ©; = {ry,=r1} and P; is given by
Pi({r1}) = 0.9. The evidence Fj is represented by the multivalued mapping
Iy : 0 — 29\{0} given by I'1(r1) = {0} and I'y(~7ry) = Q.

Since the effect of the evidence Fy on € can only be calculated if the
sample space (01,2°1, P;) is known, one might say that the evidence is rep-
resented by the pair consisting of the multivalued mapping and the original
information level. However, we prefer to say that the evidence is represented
by I'y and that {@1,2%1, P;) is the underlying sample space.

To give a formal definition of DS-independence we need the notion of
product probability function.

Definition 4.4.1 Let (01,291, P\) and (04,292, P,) be probability spaces.
Their product probability space is the probability space (01X ©4,291%92 Py
where P is given as follows.

For every (01,62) € 01 X Oy, P({{01,62)}) = P1({61}) - P2({02}).

The thus defined probability function P is called the product probability
function of P; and Ps.

If the probability spaces (01,291, P;) and (05,22, P,) represent inde-
pendent experiments, then their product probability space is the legitimate
representation of the combined experiment.
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Definition 4.4.2 Let Q be a sample space. Assume that the evidence Iy is
represented by the multivalued mapping T'y : ©1 — 2*\{0} with underlying
probability space {1,291, Py), and that the evidence Ey is represented by
Iy @ Oy — 2\{0} with underlying probability space (©4,292 P,). The
pieces of evidence Fy and Fy are called DS-independent iff the probability
Sfunction over ©1 X Q4 is the product probability function of Py and P;.

Thus the pieces of evidence Fy and Fo are DS-independent, not if £y
and Fo are independent, but if the underlying probability spaces, repre-
senting the sources of the evidence, are independent. The property of DS-
independence does not rely on the multivalued mappings.

The above definition of DS-independence in the context of Dempster’s
model is based on Shafer’s explanation of what he meant by “entirely dis-
tinct bodies of evidence”. This explanation presupposes an interpretation
of DS theory which is essentially Dempster’s model. It still remains unclear
how Shafer’s requirement can be explained without reference to the original
information level.

Having clarified the requirements in the context of Dempster’s model,
it makes sense to ask whether the requirements are sufficient to guarantee
the validity of Dempster’s combination rule. The answer is negative, since
some (rather unrealistic) additional assumptions are needed. Below we give
a (slightly simplified) description of these additional assumptions.

Definition 4.4.3 Let P € PROB(Q) and E C Q such that P(E) > 0. The
subsets Ay, Ag, ..., A, of Q are called equally confirmed by E iff there exists
a A such that for all i € {1,2,...,n}, P(A;|E)=X- P(A)).

Assume that the evidence Fj is represented by the multivalued mapping
Iy : ©; — 2% with underlying probability space (0,291, P}, and that the
evidence F, is represented by I'y : @y — 2% with underlying probability
space {09,292 Py).

A pair (61,02) € Oy X Oy is called compatible iff T1(6,) N T2(62) # 0.
Dempster’s rule needs the additional assumption that every compatible pair
(01,02) € ©1 X O is equally confirmed by the evidence Ey N Ej.

Example 4.4.5 Consider example 4.4.4. In this case, the additional as-
sumption needed for Dempster’s rule implies that the evidence £y and F»
equally confirms the pairs (r1,r2), (r1, 772), (271, 72), and (=ry, —7r3).

This assumption is not very realistic, since the fact that the two sensors
agree tends to confirm the hypothesis that the sensors are reliable more than
the hypothesis that the sensors are unreliable.

61



We may conclude that under the interpretation of a belief function as
a special kind of lower probability function, Dempster’s combination rule is
not valid, not even when the bodies of evidence are DS-independent and the
frame discerns the relevant interactions of the evidence.

This leaves open the question whether DS theory, and Dempster’s rule in
particular, can be justified under an interpretation of the formalism which
is not based on (generalised) probability theory.

Shafer’s original interpretation in A Mathematical Theory of Fuvidence
is supported by a reasonable intuitive explanation of the notions involved.
Moreover, some examples are given in which the theory gives intuitively
appealing results. However, it is telling that Shafer had to appeal to Demp-
ster’s model in order to explain his requirement that Dempster’s rule should
only be applied to “entirely distinct bodies of evidence”.

Presently, the Transferable Belief Model (TBM) of Philippe Smets is the
best developed interpretation of (the formalism of) DS theory in the line
of Shafer’s original interpretation. In the TBM there exists no presupposed
link between belief functions and probability theory. The impact of a piece
of evidence is represented by a mass function and Dempster’s rule of condi-
tioning is used for the transfer of belief.

Smets has given an axiomatic justification of TBM, that is, a number of
principles, which are defended as plausible principles, and which are shown
to be necessary and sufficient for degrees of belief to be represented by
belief functions and for conditioning to be represented by Dempster’s rule
of conditioning.

A detailed treatment of Smets’ result is beyond the scope of these notes.
Instead, we end our discussion with an example (deriving from Smets) which
has been used (by different authors) to argue both for and against Demp-
ster’s rule.

Example 4.4.6 Mr. Jones has been murdered by one of the assassins Al-
bert, Bob, and Cindy under orders of Big Boss, who has chosen between
these three possible killers as follows. He decided between a male or a fe-
male killer by means of tossing a fair coin. A male killer was chosen in case
the coin landed heads. Otherwise, a female killer was chosen. No informa-
tion is available on how he decided between the two male assassins in case
the coin landed heads.

Based on the information above, it seems reasonable to say that the
killer being male and the killer being female are equally likely. Now suppose
that you learn that at the time of the murder, Albert was at the police
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station, where he was questioned about some other crime. So you can rule
out Albert as the killer. Are the killer being male and the killer being female
still equally likely, or not? The answer of DS theory (and the TBM) is “yes”,
whereas generalised probability theory answers “no”.

Let Q = {a,b, c}, where a : Albert is the killer, et cetera. The informa-
tion about the selection process of Big Boss is represented in DS theory by
the mass function m given by m({a,b}) = m({c}) = 0.5, and in generalised
probability theory by the set Il = {P € PROB(Q) : P({a,b}) = P({c}) =
0.5}. So far, there is no disagreement, since Bel = Il .

Now consider the effect of the evidence that Albert is not the killer, that
is, condition on {b, c}. In DS theory, this results in the mass function mg;
given by mg 1 ({0}) = mgg o ({c}) = 0.5. Thus the killer being male and
the killer being female are still considered to be equally likely.

On the other hand, Il .y = { Py 2 P €I, P({b,c}) # 0}, and it easy
to check that (I cy)iow({0}) = 0, (I o )up({0}) = 0.5, (I 3 )iow({c}) =
0.5, and (I} )up({c}) = 1. Thus generalised probability theory leaves
open the possibility that the killer being female is more likely than the killer
being male.

Some authors (including Smets) maintain that in the example above
the answer of DS theory is to be preferred. Other researchers (including
Fagin, Halpern, and the author of these notes) prefer the answer given by
generalised probability theory.

Exercise 4.4.1 Let Bel be a belief function over  with n focal elements.
Show that Bel @ Bel = Bel iff the focal elements of Bel are pairwise disjoint
and m(A) = L, for each focal element A.

Exercise 4.4.2 Specify the product probability space of the probability
spaces underlying the pieces of evidence of example 4.4.4. How should in
your opinion the probabilities be updated after combining the evidence?
How are these probabilities (implicitly) updated when using Dempster’s rule
of combination?

Exercise 4.4.3 Let P € PROB(Q) and let Ay, A;,..., A, and £ be sub-
sets of ) with positive probability. Show that Ay, A,,..., A, are equally
confirmed by E iff for all 7,5 € {1,2,...,n}, P(E|A;) = P(E|A;j).
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4.5 Applications of DS Theory

In spite of the problems with justifying DS Theory, it is still occasionally
applied in several different Al domains. (Medical diagnosis, computer vi-
sion, locating submarines, classifying radar images, robot localisation, etc.)
People using DS Theory mention the following reasons:

1. The difficult problem of specifying all (prior) probabilities can be
avoided.

2. In addition to uncertainty, also ignorance can be expressed.

3. It is straightforward to express pieces of evidence with different levels
of abstraction.

4. Dempster’s combination rule can be used to combine pieces of evi-
dence.

The first three reasons are related and can be considered advantages of
DS Theory relative to Probability Theory, but the same advantages can be
achieved by Generalised Probability Theory.

Generalised Probability Theory lacks a (simple) combination rule, but
such a rule is hard to justify anyway. Moreover, in concrete applications, of-
ten not much serious attention is paid to the assumptions required for apply-
ing Dempster’s rule. But it is only fair to mention that also in applications
of (Generalised) Probability Theory often many simplifying assumptions are
made (explicitly or implicitly) without proper justification.

As mentioned in the first section, the availability of a combination rule
has computational advantages, but DS Theory still has potential computa-
tional complexity problems, since its mass functions are potentially exponen-
tially larger than probability functions. Another disadvantage of DS Theory
is that it still lacks a well-established decision theory, whereas Bayesian Deci-
sion Theory (maximising expected utility) is almost universally accepted by
those using Bayesian Probability Theory. Generalised Probability Theory
has the same problems, or worse.

Experimental comparisons between DS Theory and Probability Theory
are scarcely performed and it is usually difficult to draw hard conclusions
from the experimental results, since typically several assumptions have to
be made when formalising the problem. Therefore, if a particular theory
gives better experimental results, this does not necessarily mean that the
theory is superior, since it can also be caused by a suboptimal analysis of
the problem in terms of the other formalisms.
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