
flex
Reference

By Dave Westwood

flex Expert System Toolkit

Version 1.2

Edition 4

Written by Phil Vasey - April 1989
Revised by David Westwood - February 1990
Updated by David Westwood - August 1992
Revised by Nicky Johns - January 1996

Logic Programming Associates Ltd
Studio 4
The Royal Victoria Patriotic Building
Trinity Road
London SW18 3SX
ENGLAND

The contents of this manual describe the product, flex™ 1.2, and are
believed correct at time of going to press. They do not embody a
commitment on the part of Logic Programming Associates (LPA), who may
from time to time make changes to the specification of the product, in line
with their policy of continual improvement. No part of this manual may be
reproduced or transmitted in any form, electronic or mechanical, for any
purpose other than the licensee's personal use without the prior written
agreement of LPA.

Copyright © Logic Programming Associates Ltd, 1989, 1990, 1992,
1996.

flex was designed and written by Phil Vasey, Logic Programming Associates
Ltd.

Welcome to the flex expert system toolkit.

Flex was originally developed by LPA in 1988 as a Prolog-based toolkit for
LPA Prolog programmers using MS-DOS. Since then it has matured into a
general purpose expert systems toolkit, and has been ported to many
different hardware and software environments.

Flex has been widely used in industry and research in various applications
such as modelling and simulation, legal reasoning, expert advisory systems,
scheduling, planning, and diagnostics.

Flex is licensed to ICL/TeamWare as part of the TeamWare/ProcessWise
portfolio of Business Process Management range of software products, and
has been used in various re-engineering projects in the UK and overseas.

Flex has been licensed to the Open University in the UK for re-distribution
to students enrolled on their course, "T396: Artificial Intelligence for
Technology".

Contents 4

flex toolkit

Contents

Contents 4

1. Introduction 9
What is flex ? 9
What are expert systems? 9

Forward Chaining 10
Backward Chaining 10
Search 10
Frames and Inheritance 10

Questions and Answers 11
Explanations 11

Data-driven Programming 11
Knowledge Specification Language 11

2. Frames and Inheritance 12
What is a Frame ? 12
Linking Frames 15
Creating an Instance of a Frame 16

Overriding Inheritance 17
Attribute Chaining 19
Global Variables 21
Inheriting Values through the Frame Hierarchy 22
Depth-First versus Breadth-First Search ? 24

How Far Should the Search Go ? 25
Universal Defaults 26
Singular Versus Multiple Inheritance ? 26

Frame Relationships 26

3. Forward Chaining and Rules 29
Rules and Relations 31

Weighting of Rules 32
Attaching Explanations to Rules 33

The Forward Chaining Engine 33
A Simple Model 34
The Implemented Model 34

Ruleset 36
The Rule Agenda 37

Setting The Initial Rule Agenda 37

Contents 5

flex toolkit

Selecting Rules 37
Updating the Agenda 39

4. Data-Driven Programming 41
Data-Driven Procedures 41

Launches 42
Constraining the Values of Slots 44
Attaching Demons to Slot Updates 45
Restricting the Access to Slots 47

5. Questions and Answers 49
Defining Questions 49
Menu Selection 49
Storing Answers 50
Keyboard Input 51
Constrained Input 51
Customized Input 52
Default Questions 52
Explaining Questions 52
Invoking Questions 53

6. The Anatomy of a flex Program 55
A Simple flex Program 56
Extending the Program 58
flex and Prolog 59
Components of the KSL 59

7. The KSL 61
KSL Terms 61
KSL Objects 64
Arithmetic Expressions 68
Dereferencing 69

KSL Formulae 70
Conditions 70
Directives 73

KSL Control Structures 77
If-Then-Else 77
Repeat-Until Loops 77
While-Do Loops 78
For Loops 79
Extended For Loops 79

Contents 6

flex toolkit

KSL Sentences 81
Frames 82
Instances 83
Rules 85
Rulesets 86
Actions 91
Relations 93
Functions 94
Launches 95
Constraints 96
Demons 96
Watchdogs 97
Data 98
Do Statements 98
Questions 100
Groups 103
Synonyms 104
Templates 105

8. Run-Time Interpretation of KSL 108
Representation of KSL Objects 108
Interpretation of KSL Sentences 110
Dereferencing of KSL Objects 111
Representation of KSL Sentences 112

9. flex Toolkit Predicates 120

10. Example - Robbie Goes Shopping 157
The Problem 157
The Configuration Section 157
The Shopping Question 158
The Compatibility Rules 158
The Resource Allocation Section 160

The Packing Rules 160
Packing The Items 162
The Initial Goal 164
Templates 165

Appendix A - Examples 166
Example 1 - Analysing a Taxonomy 166
The Animal Kingdom 166
Representing Mammals 167
Representing Birds 170

Contents 7

flex toolkit

Representing Fish 171
The Identification Algorithm 172
Some Example Questions 172
Example 2 - The Water Containers 174
The Problem 174
The Containers 174
The Tests 175
The Operations 175
The Rules 176
The Rule Network 177
The Ruleset 178

Appendix B - Formal Definition of KSL 179
Grammatical Structures 179

Optional Structures 179
Disjunction & Conjunction 179
Sequences 179

KSL Sentences 180
Frame 180
Instance 181
Launch 182
Demon 183
Constraint 183
Watchdog 184
Production Rule 185
Ruleset 185
Action 187
Relation 187
Function 187
Command 187
Data 188
Question 188
Group 189
Synonym 189
Template 189

KSL Formulae 190
Condition 190
Comparison 191
Directive 192
Control Statement 194
Procedure 195

KSL Objects 196

Contents 8

flex toolkit

Variant 196
Set 197
General Term 197
Arithmetic Expression 199

Appendix C - KSL Keyword Glossary 201

Appendix D - Dealing with Uncertainty 226
Uncertainty in Data 226
Combining Probabilities 226
Affirms and denies 227
Odds and Probability 229
Absence of Evidence 230
Certainty Theory 231

1. Introduction 9

flex toolkit

1. Introduction

Welcome to the flex expert system toolkit.

We wish you success with generating your expert system
applications using flex.

What is flex ?

flex is an expressive and powerful expert system toolkit which supports
frame-based reasoning with inheritance, rule-based programming and data-
driven procedures fully integrated within a logic programming environment,
and contains its own English-like Knowledge Specification Language (KSL).

flex goes beyond most expert system shells in that it employs an open
architecture and allows you to access, augment and modify its behaviour
through a layer of access functions. Because of this, flex is often referred to
as an AI toolkit. The combination of flex and Prolog, i.e a hybrid expert
system toolkit with a powerful general-purpose AI programming language,
results in a functionally rich and versatile expert system development
environment where developers can fine tune and enhance the built-in
behaviour mechanisms to suit their own specific requirements.

flex appeals to various groups of developers; expert systems developers who
want to deliver readable and maintainable knowledge-bases, advanced expert
system builders who want to incorporate their own controls, AI
programmers who want access to a high-level language-based product and
Prolog programmers who require extra functionality and structures.

What are expert systems?

Expert systems (or knowledge-based systems) allow the scarce and expensive
knowledge of experts to be explicitly stored into computer programs and
made available to others who may be less experienced. They range in scale
from simple rule-based systems with flat data to very large scale, integrated
developments taking many person-years to develop. They typically have a
set of if-then rules which forms the knowledge base, and a dedicated
inference engine, which provides the execution mechanism. This contrasts
with conventional programs where domain knowledge and execution control
are closely intertwined such that the knowledge is implicitly stored in the
program. This explicit separation of the knowledge from the control
mechanism makes it easier to examine knowledge, incorporate new
knowledge and modify existing knowledge.

1. Introduction 10

flex toolkit

Forward Chaining

Forward chaining production rules in flex follow the classical if-then rule
format. Forward chaining is data-driven and is very suitable for problems
which involve too many possible outcomes to check by backward chaining,
or where the final outcome is not known.

The forward chaining inference engine cycles through the current rule
agenda looking for rules whose if conditions can be satisfied, and selects a
rule to use or fire by executing its then part. This typically side affects data
values, which means that a different set of rules now have their conditions
satisfiable.

Flex extends the classical production rule with an optional explanation
facility and dynamic scoring mechanism for resolving conflicts during rule
selection. Rules can have multiple conclusions or actions (either positive or
negative) in their then part .

The rule selection and agenda update algorithms of the forward chaining
engine are flexible, with many built-in algorithms and the option of applying
user-defined algorithms.

Backward Chaining

Backward chaining rules, which correspond closely to Prolog predicates, are
called relations in flex. They have a single conclusion that is true, if all the
conditions can be proven. Backward chaining is often referred to as goal-
driven, and is closely linked to the notion of provability.

Search

Search is one of the key characteristics of expert systems. There are
normally many ways of combining or chaining rules together with data to
infer new conclusions. How to examine only the relevant part of this search
space is a serious consideration with regard to efficiency. The ordering of
rules, the provision of meta-rules (rules about which rules to use) and
conflict-resolution schemes are all ways of helping us produce a sensible
search tree which we can investigate. Prolog-based systems tend to use a
depth-first strategy, whereby a certain path is fully explored by checking
related paths, combined with backtracking to go back and explore other
possibilities when a dead-end is reached.

Frames and Inheritance

Frame hierarchies are similar to object-oriented hierarchies. They allow data
to be stored in an abstract manner within a nested hierarchy with common
properties automatically inherited through the hierarchy. This avoids the
unnecessary duplication of information, simplifies code and provides a more
readable and maintainable system.

1. Introduction 11

flex toolkit

Each frame or instance has a set of slots that contain attributes
describing the frame's characteristics. These slots are analogous to fields
within records (using database terminology) except that their expressive
power is greatly extended.

Frames inherit attribute-values from other frames according to their
position in the frame hierarchy. This inheritance of characteristics is
automatic, but can be controlled using different built-in algorithms.

Questions and Answers

Flex has a built-in question and answer sub-system that allows final
applications to query the user for additional input via interactive dialogs.
These screens can be simple pre-defined ones, or complex, sophisticated
screens constructed using Prolog's own screen handling facilities and then
attached to the question and answer sub-system.

Explanations

Flex has a built-in explanation system which supports both how and why
explanations. Explanations can be attached to both rules and questions using
simple because clauses.

Data-driven Programming

Flex offers special procedures which can be attached to collections of
frames, individual frames or slots within frames. These procedures remain
dormant until activated by the accessing or updating of the particular
structure to which they have been attached. There are four different types of
data-driven procedures available within flex: launches, demons,
watchdogs, and constraints.

Knowledge Specification Language

Flex has its own expressive English-like Knowledge Specification Language
(KSL) for defining rules, frames and procedures. The KSL enables
developers to write simple and concise statements about the expert's world
and produce virtually self-documenting knowledge-bases which can be
understood and maintained by non-programmers. The KSL supports
mathematical, boolean and conditional expressions and functions along with
set abstractions; furthermore, the KSL is extendable through synonyms and
templates. By supporting both logical and global variables in rules, flex
avoids unnecessary rule duplication and requires fewer rules than most other
expert systems.

2. Frames and Inheritance 12

flex toolkit

2. Frames and Inheritance

In this chapter we describe the frame sub-system of flex. This includes the
form and content of individual frames, how frames are linked together to
form a frame hierarchy, and how values are inherited through that
hierarchy.

What is a Frame ?

A frame is similar to an object and is a complex data structure which
provides a useful way of modelling real-world data objects.

Frames are analogous to records within a database but are far more
powerful and expressive. Each individual frame has a name by which it is
referred, details of its parent(s) frame, and a collection of slots or attributes
(similar to fields within records) which will contain values or pointers to
values. Slot values can be explicitly defined locally, or implicitly inherited
from an ancestor frame further up the hierarchy.

Frame

motions fly
bird

habitat tree
skin feather

Name

Slots

Flex has its own language (for representing frames and other constructs)
called the Knowledge Specification Language. For example, the KSL code
for the above frame could be:

frame bird
default skin is feather and
default habitat is a tree and
default motions are { fly } .

2. Frames and Inheritance 13

flex toolkit

Each slot has three principal components:

• attribute name - such as habitat, describing the concept

• default value - the default value, to be used when there is no current
value

• current value - the current value for the attribute

motions fly

Attribute
Name

Default
Value

Current
Value

A frame can be viewed as a dynamic array having three columns (Attribute
Name, Default Value and Current Value) and an arbitrary number of rows,
one for each slot.

It is important to note the difference between default and current values,
since some flex operations work on only on current values.

The following example is an illustration of a frame representing the concept
of a jug.

position upright
jug

capacity 15
contents 7.50

Attribute
Name

Default
Value

Current
Value

Slots may or may not have values. For example, there is a current but not a
default value for the position of the jug, a default but not a current value
for the capacity of the jug, and both a default and a current value for the
contents of the jug. The default value for a slot is used only in the
absence of a current value for that slot.

When a frame is declared in the KSL, the initial default values of its
attributes may be declared, as in the above example of the frame bird.
However, additional slots may be added dynamically simply by referring

2. Frames and Inheritance 14

flex toolkit

to them and giving them a value. For example, the above jug frame may be
declared in KSL as

frame jug
default capacity is 15 and
default contents is 0 .

Its position slot may then be created and its contents updated as
follows, using a KSL action (described later).

action jug_update ;
do the contents of the jug becomes 7.5 and
the position of the jug becomes upright .

There are no restrictions on what terms can be used as the default or current
values of slots. They can be any valid Prolog term. They can be calculations
(or access functions), which are performed whenever you need the slot
value.

frame box
default width is 10 and
default depth is 5 and
default volume is its width times its depth .

Default Values

Default values are usually associated with general objects or classes, rather
than specific instances. They are only used when a specific (current) value is
not available.

The default values of slots normally remain throughout the lifespan of the
frame: they are not intended to change dynamically (although flex does
allow the creation at run-time of dynamic frames, instances, slots, default
and current values).

Current Values

Current values are usually associated with specific instances rather than
general classes. A current value for a slot overrides any default value which
that particular slot may have.

The current value of a slot usually changes dynamically as further
information is gathered at run-time, maybe as a result of a question being
asked or some look-up in a database.

For example, if we are monitoring the environment within a mine, we can
reflect changes in the physical environment by updating the appropriate
current values. This is often as the consequence of some rule being fired or
some action being executed.

rule methane_update
if the temperature of the mine is above 66
then the methane_level of the mine becomes slight .

2. Frames and Inheritance 15

flex toolkit

So, whenever this rule is fired, the attribute methane_level of the frame
mine is given the current value slight.

Linking Frames

In the previous section we looked at the form and content of frames, which
are structures for representing objects. The frame system, however, provides
more than a data storage mechanism: by allowing objects to be linked to
each other, it enables a frame hierarchy to be established.

The links between frames determine the overall structure of the frame
hierarchy. Each link links a parent-frame to a child-frame. The child-frame
can be thought of as a specialisation of the parent-frame, or, the parent-
frame as a generalisation of the child-frame.

A child-frame can inherit values (both default and current) from any of its
parent-frames, which in turn can inherit values from their parent-frames,
and so on. In this way, information filters down from the frames at the top
of the hierarchy to those leaf nodes at the bottom of the hierarchy.

This allows the distribution of information without duplication.

Let us consider a small section of the animal kingdom as below.

Animal

Mammal Carnivore

Rodent Feline

An arrow pointing from one frame to another indicates a parent-frame to
child-frame link in the hierarchy.

The KSL frame declarations for the above diagram are as follows:

2. Frames and Inheritance 16

flex toolkit

frame animal .

frame carnivore .

frame mammal is an animal
default blood is warm and
default habitat is land .

frame rodent is a kind of mammal
default habitat is sewer .

frame feline is a mammal, carnivore .

There are three kinds of isa links used in this example hierarchy.

A single connection between the parent-frame and the child-frame, i.e. one-to-one.
An example of this is the link between animal and mammal, and is the usual
kind of link to be found in hierarchies.

Links from a parent-frame to more than one child-frame, i.e. multiple children.
An example of this is the link between mammal and its two sub-classes, rodent
and feline. In this case both rodent and feline are types of mammal, and
share some characteristics (like warm blood), but not necessarily all
characteristics.

Links from a child-frame to more than one parent-frame, i.e. multiple parents. An
example of this is the linkage from mammal and carnivore to the class
feline. In this case a feline has some of the characteristics of a mammal
and some of the characteristics of a carnivore. Here, the ordering of the
parenthood is important, as it affects the order for which inherited values are
returned by the inheritance search algorithm. This capability to have more than
one parent is sometimes referred to as multiple inheritance.

By inheritance from mammals, all felines and all rodents are warm-blooded.
However, whilst all felines live on land, the locally declared default for a
rodent's habitat will override the inherited default from mammals, with the
result that rodents are deemed to live in sewers. If we now defined, say, a
squirrel as a kind of rodent, then the default value for their habitat attribute
would be a sewer.

Creating an Instance of a Frame

So far we have discussed the use of frames to represent general (static)
objects such as mammals, felines and rodents. However, frames may also
represent specific (dynamic) instances of objects such as Sylvester (a well-
known cat) or Sammy (my cat).

In formal terms there is very little to distinguish a frame representing a class
of objects from an instance representing a specific instance of the frame.
Instances appear as leaf nodes in the frame hierarchy and can have only one

2. Frames and Inheritance 17

flex toolkit

single parent-frame. In addition, instances may only contain current values
in their slots; they may not have default values declared.

Example

Feline

Cat

Sylvester Sammy

The instances are represented by a box without a shadow.

The KSL representation of the above is as follows.

frame feline is a mammal, carnivore
default legs are 4 .

frame cat is a feline
default habitat is house and
default meal is kit_e_kat .

instance sylvester is a kind of cat .

instance sammy is an instance of cat .

Here, by default, both sylvester and sammy will live in a house, eat
kit_e_kat and have 4 legs.

Overriding Inheritance

In our examples so far, a child-frame will automatically inherit from its
parent-frames. We may wish, however, for a particular attribute to be
inherited from a frame outside the hierarchy, or from a particular frame
within the hierarchy, or not inherited at all.

Specialised Inheritance

In flex a special inheritance link may be defined that allows a specific
attribute to be inherited from a specific frame.

For example, if we had a vegetarian instance of cat called sammy, we could

2. Frames and Inheritance 18

flex toolkit

define the hierarchy such that the meal of sammy is specially inherited from
herbivore and not by normal inheritance from carnivore (via cat and
feline). Note that this only affects the meal attribute.

Herbivore

Carnivore

Feline

Cat

Meals

Sylvester Sammy

The corresponding KSL code would be:

instance sammy is an instance of cat ;
inherit meal from herbivore .

Note that herbivore is not a parent of sammy: it only contributes the
meal attribute.

Negative Inheritance

In flex the inheritance of a particular attribute for a particular frame may be
suppressed.

For example, manx cats do not have tails, if as part of our hierarchy we
have defined the tail attribute in the feline frame. We could define the
manx frame such that the inheritance of the tail attribute is suppressed.

2. Frames and Inheritance 19

flex toolkit

Feline

Cat

Manx

Tail

The KSL code for this is as follows.

frame cat
default tail is furry .

frame manx is a cat
do not inherit tail .

Attribute Chaining

Sometimes it may be convenient for an attribute to have its own set of
values, and in this case slots may contain pointers to other frames rather
than simple values.

Example

frame address
default city is 'London' .

frame employee
default residence is an address .

2. Frames and Inheritance 20

flex toolkit

employee
residence address

city is 'London'

In this example, the value attached to the residence attribute of the
employee frame is a pointer to another frame, namely address.

If we want to know the city of residence of an employee, we can refer to this
in three different ways:

X is the residence of employee
and Y is the city of X

or

Y is the city of the residence of employee

or, using the operator `s as shorthand

Y is employee`s residence`s city

all of which make London the value of the variable Y.

For example, if we create a new employee instance called phil, then it will
be assumed that phil lives in London.

instance phil is an employee .

If, however, Phil does not live in London, but in Glasgow, then we can
reflect this with the following directive.

do the city of residence of phil becomes 'Glasgow'

This has actually set up the following structure.

2. Frames and Inheritance 21

flex toolkit

employee
residence address

city is 'London'

unique0

city is 'Glasgow'

phil
residence

Global Variables

One special use of frames is to store global variables. These are defined as
attributes of a special frame called global.

Example

frame global
default current_interest_rate is 10.3 .

This creates a global variable called current_interest_rate which may
then be referred to by any KSL statement.

The values of global variables may be updated at run-time.

Global variables are also used to store the response to a flex question -
see the chapter on Questions.

2. Frames and Inheritance 22

flex toolkit

Inheriting Values through the Frame Hierarchy

In earlier sections we discussed frames and their possibility for distributing
information. In this section we shall discuss in more detail exactly how the
distributed information passes from one frame to another.

In general, information flows down the frame hierarchy from those at the
top to those at the tips. This is accomplished by inheritance.

Whenever there is a request for the some slot value, the inheritance
algorithm is automatically invoked. The most obvious place to look first is in
the original frame itself, since it may have either a current or a default value
for the required attribute. Only if such a value does not exist locally will it be
necessary to look elsewhere.

Where to look, in which order to look and when to stop looking are the
subject matter of the following sections. We shall use the following example
hierarchy to illustrate the different methods.

Example

2. Frames and Inheritance 23

flex toolkit

Herbivore

Mammal

Feline

Cat

Meals

Sammy

Carnivore

Animal

great-great
grandparent

great
grandparent

grandparent

parent

2. Frames and Inheritance 24

flex toolkit

Depth-First versus Breadth-First Search ?

The frames to be considered, when looking for a potential place to inherit
from, are determined by the frame hierarchy and the attribute in question.

Whenever there are alternative places to search, there are inevitably
alternative ways of looking.

In both of the following methods, the search is left-to-right over the ordering
of parent-frames.

A depth-first search of the frame hierarchy will investigate a complete
ancestor branch before considering alternative ancestor branches.

For example, a depth first search of the example hierarchy, starting at
Sammy, will visit the following frames in order :

3

Feline

Cat

Sammy

Animal

Mammal Carnivore

4

1

2

5

1 Cat being the parent-frame of Sammy
2 Feline being a grandparent-frame
3 Mammal being the first great-grandparent-frame
4 Animal being a great-great-grandparent-frame
5 Carnivore being the second great grandparent-frame

A breadth-first search, however, will visit all frames at a particular ancestor
level before considering any at a higher level. It will visit all parent-frames
first, then all grandparent-frames, all great-grandparent-frames, and so on.

2. Frames and Inheritance 25

flex toolkit

For example, a breadth first search of the example hierarchy, starting at
Sammy, will visit the following frames in order :

3

Feline

Cat

Sammy

Animal

Mammal Carnivore

5

1

2

4

1 Cat being the parent-frame of Sammy
2 Feline being a grandparent-frame
3 Mammal being the first great-grandparent-frame
4 Carnivorebeing the second great grandparent-frame
5 Animal being a great-great-grandparent-frame

An important characteristic of a breadth-first search is that the ultimate value
returned will be from an ancestor-frame as close as possible to the original
frame.

Depth-first is the default search strategy, and the more efficient, as it maps
closely onto Prolog's own built-in search mechanism.

How Far Should the Search Go ?

For large frame hierarchies it may be desirable to limit the amount of effort
used to search for inherited values. For this reason, flex provides a means
whereby the maximum depth of search (a non-negative integer) can be
imposed. This throttle is irrespective of whether the search procedure is
depth first or breadth first.

For example, if the limit is 2 then only parent-frames and grandparent-
frames will be considered.

In particular, if the limit is 0 then there will be no inheritance at all. The
default value for effort is 9 levels.

2. Frames and Inheritance 26

flex toolkit

Universal Defaults

Flex supports the notion of universal default values. These are default
values which may be inherited by any frame in the hierarchy.

For example, in a system representing physical objects the notion of weight
is universal. It is the product of the object's volume and density.

Rather than have a weight slot in each frame of the hierarchy, it would be
more sensible to have a single global definition of weight which is universally
accessible.

This is accomplished by having a special frame called root, which is always
considered when inheriting values. The inheritance algorithm can be
directed to visit the root frame either before or after visiting any ancestor
frames.

Singular Versus Multiple Inheritance ?

Whenever a frame system allows for values to be inherited, there is the
possibility for alternative answers according to where the inheritance comes
from. This is in many ways similar to Prolog itself, which allows for
alternative answers to the same query.

The plurality of inheritance within flex can either be singular (the default)
or multiple. In both cases the search stops as soon as the first value is
found.

For singular inheritance there is a commitment to this first value, and no
others will ever be considered.

For multiple inheritance, however, alternative values can be obtained by
backtracking using the inheritance algorithm, which is a Prolog program.

In reality, the singular inheritance algorithm is the same as the multiple
inheritance algorithm except that it terminates with a cut (!) to avoid any
potential backtracking.

Frame Relationships

In its default setting, the only relationship between frames is the AKO (a-
kind-of) hierarchy which defines how values are to be inherited. In general,
though, it would be of great benefit to be able to define other relationships
between frames, such as all tigers can hunt humans.

2. Frames and Inheritance 27

flex toolkit

Example

frame tiger .

frame human .

relation can_hunt(tiger, human) .

tiger humancan_hunt

In its present form, the extension of the can_hunt/2 relation contains only
a single tuple, namely the pair <tiger,human>. If we were to pose the
Prolog query …

?- prove(can_hunt(X, Y)) .

there would be a single solution which binds the indentifier tiger to the
variable X, and binds the indentifier human to the variable Y. (prove/1 is a
built-in flex predicate, described later.)

Now consider two particular instances of tiger and human.

Example

instance shere_khan is a tiger .

instance mowgli is a human .

tiger humancan_hunt

shere_khan mowgli

The answers to our query above will remain the same, namely only a single
solution. This is because the underlying logic only allows unification between
objects which have the same name (i.e. pattern-matching). The query

?- prove(can_hunt(shere_khan, mowgli)) .

would fail because shere_khan does not match tiger, and furthermore
because mowgli does not match human.

2. Frames and Inheritance 28

flex toolkit

The flex system allows the underlying logic to be changed from one
involving unification to one involving inheritance.

That is, although …

tiger does not match shere_khan
human does not match mowgli

with an inheritance logic we can show that …

tiger is an ancestor of shere_khan in the frame hierarchy
human is an ancestor of mowgli in the frame hierarchy

and as such we can conclude that the tiger shere_khan can hunt the
human mowgli. The underlying logic can be changed by issuing the Prolog
command …

?- new_logic(inherit) .

It should be noted at this point that there is a general overhead involved in
changing from a unification-based logic to an inheritance-based logic. That
is, every procedure invocation will involve data lookup rather than direct
pattern-matching.

It should also be noted that the inheritance-based logic can only be used for
checking given values, and not for generating instances of relationships. For
example, it can check that shere_khan can hunt mowgli, but will not be
able to generate it.

3. Forward Chaining 29

flex toolkit

3. Forward Chaining and Rules

In this chapter we shall describe the rules and inference engine of the
forward chaining system and contrast it with backward chaining. Rules are
really the life-blood of expert systems technology, and provide elegant,
expressive and intuitive means of expressing knowledge.

A simple rule may be, 'if it is raining then carry an umbrella'. Then given
the fact that 'it is raining', we can infer or derive that we should 'carry an
umbrella'. Facts can be thought of as degenerate cases of rules, i.e. rules
without any pre-conditions, or rules whose pre-condition part is always true.
Facts may be stored in a local database, retrieved from some external
database, obtained through user question and answer interaction, stored as
global variables, or derived from other rules.

Another rule may be 'if it is raining then the ground is wet'. Now, given
the same fact that 'it is raining', we can also infer or derive that 'the ground
is wet', and store this as a fact, or, if ground is an attribute of some frame,
set its value to wet.

The collection of all facts is often referred to as the fact base. In rule-based
programming we use an inference engine to match rules against facts to
produce new facts which means we can then use new rules, until we reach
some final state.

Trying to prove the pre-conditions of forward chaining rules may well
involve some backward chaining evaluation of sub-goals, i.e. there may be a
backward chaining program for determining the current state of the
weather. The integration of the two inference mechanisms can be as simple
or as complicated as required. Notice, in the absence of information,
execution fails and conditions in effect are deemed false. This is known as
the closed world assumption.

We shall use the following propositional example to show the difference
between backward chaining inferences and forward chaining inferences.

A if B and C .
B if D .
C .
D .

The first two statements are rules, and the second two statements are
axioms (or facts).

Forward Chaining

Forward chaining inference is very much akin to the way in which
mathematical proofs are presented (but not necessarily arrived at). Using

3. Forward Chaining 30

flex toolkit

the axioms as a starting point, further conclusions (lemmas in a
mathematical proof) can be added to what is known by the bottom-up
application of the rules. For example, since we already know D (it is an
axiom), we can use the second rule (B if D) to conclude B. From the lemma
B and the axiom C we can then use the first rule to conclude A. This is often
referred to as data-driven reasoning, because we are using the data to drive
forward the chain of inferences.

Within a forward chaining system, the rules above can be interpreted as:

given D, B may be inferred

given B and C, A may be inferred

What this style of reasoning suffers from is a lack of a sense of direction, or
purpose. When deciding which rule to apply next, it is very difficult to decide
which conclusion will get us closer to the desired goal. In this mode, you are
likely to generate some valid configuration, with which you may or may not
be happy.

Forward chaining has proved itself very suitable to configuration problems,
where you do not know what the final configuration will be, but you know
how to combine bits of data together according to some combining rules,
and know that if you just keep applying rules, then eventually you will have
combined everything accordingly.

A production rule system, as implemented in flex, can be viewed as a kind
of bottom-up reasoning system where you push the data up through the
rules to get more inferred data. Although the propositional rules here only
have one action per rule (i.e. add the conclusion to what is known), a
production rule may contain multiple actions and conclusions for updating
the state of the system.

Backward Chaining

Backward chaining inference begins with a conclusion that needs to be
established, say A. At each point during the inference, the rules are used to
reduce the current goal or goals to a collection of sub-goals. For example,
the first rule suggests that the goal of showing A can be reduced to the sub-
goals of showing B and C. This process continues until all of the remaining
sub-goals correspond to axioms, such as C and D. This is often referred to
as goal-driven reasoning, because we are constantly trying to prove goals
by proving their sub-goals.

This style of reasoning is very effective when we wish to determine whether
or not a certain condition holds. As in Prolog, goals are replaced by sub-

3. Forward Chaining 31

flex toolkit

goals which are then exploded using a left-to-right, depth-first search
algorithm combined with backtracking.

Within a backward chaining system the rules above can be interpreted as:

goal A is replaced by goal B and goal C

goal B is replaced by goal D

goal B succeeds

goal D succeeds

goal C succeeds

goal A succeeds

Backward chaining has proved itself very suitable to provability and
validation applications, but often requires a generate-and-test approach
which itself can involve the checking of many, often redundant,
combinations. The ideal solution is to mix and match, i.e. interleave both
types of chaining. This leads to the main thrust of the computation being
forwards, with frame-attributes being constantly updated by rules being fired,
but with local provability computations being initiated by the backward
chaining engine as it tries to establish which rules can be triggered.

Rules and Relations

In order to distinguish between rules which are intended to be used in a
forward chaining manner from those which are to be used in a backward
chaining manner, flex uses different rule formats and different KSL
keywords.

Forward chaining rules are indicated by the keyword rule; backward
chaining rules are indicated by the keyword relation.

Both formats fit the classical if-then style, but whereas backward chaining
relations allow only for a single, positive conclusion in the then part, there is
no such restriction in forward chaining rules which may have multiple

3. Forward Chaining 32

flex toolkit

conclusions, any of which may be either positive or negative in nature.

Forward chaining rules often contain an action as part of their conclusion.
This action usually updates various data (slot) values, which means that
different rules will or will not now fire next time round the forward chaining
cycle.

Backward chaining, on the other hand, generally seeks to establish a logical
sequence of rules and facts in order to prove a clause or goal. This does not
involve rule firing or executing actions, but is of a more deductive nature.

Weighting of Rules

In rule-based systems there are always choice points where one rule is
preferred to another. Attaching weights to rules is an option which can
assist in making those decisions.

The weight of a rule reflects its relative importance with respect to the other
rules in the system. Whenever two or more rules are simultaneously
applicable, their relative weights can be compared to decide which one to
use.

Most weighting systems will be static, with each rule being assigned a
specific score. The more important the rule, the higher its score should be.
So, in the example below, if we have plenty of beer in the fridge, and the
weather is hot, and it's late, then we will always drink beer regardless of the
order of the rules.

Example

rule drink_tea
if the hour is late
then drink_a_cup_of_tea
score 5 .

rule drink_beer
if the fridge includes some beer
and the weather is hot
then drink_a_can_of_beer
score 10 .

In addition, flex allows for dynamic weighting systems whereby the score
attached to a rule is not fixed when the rule is defined, but is dependent
upon some changing information.

For example, suppose we have a rule-based system for controlling the flow
of materials between different storage vessels in a chemical plant, which
contains a rule empty_master_into_slave. It is not easy to give an
exact score for this rule which is accurate in all circumstances. At certain
times this may be the most appropriate rule, but at other times there may be
another rule, say emptying the master vessel completely, that is more
important. To reflect this dependence upon the current circumstances, we

3. Forward Chaining 33

flex toolkit

can give the rule a dynamic score.

rule empty_master_into_slave
if the master is not empty
and the slave`s contents

> the master`s spare_capacity
then fill_from(master, slave)
score master`s contents plus slave`s contents .

As the contents of the two vessels change, so the weighting of this rule also
changes. We could even give the system a sense of chance by using random-
valued scores.

Attaching Explanations to Rules

The final part of a production rule in flex involves the attachment of an
optional explanation to rules. This is used to explain why a rule was fired.

The explanation itself can either be some canned text or a pointer to a disk
file accessed at run-time through a file browser.

When explaining the rule either the canned text is displayed on screen or
the user is allowed to browse through the file.

rule 'check status'
if the applicant`s job is officer
and the applicant`s age is greater than 65
then ask_for_grading
because The job grading affects the pension .

The above rule will cause the single line of text The job grading
affects the pension to be displayed on the screen whenever an
explanation is requested.

The latter alternative allows for a more flexible explanation facility. Indeed,
the only purpose of the rule-based system might be as an intelligent link into
the file browsing system. Such applications include the reviewing of
technical manuals, especially medical journals.

rule 'check status'
if the applicant`s job is principal
and the applicant`s age is greater than 65
then check_principal_function
browse file status .

The Forward Chaining Engine

The forward chaining engine is implemented as a Prolog program. The
emphasis of the implementation is placed upon simplicity coupled with great
flexibility, rather than extracting the highest possible performance.

3. Forward Chaining 34

flex toolkit

A Simple Model

All production rule systems are based upon the same, very simple model.
This is illustrated by the following flowchart.

START

STOP

FAIL

Choose a
rule ? No

Yes

Fire the
rule ?

No

Yes

The basic cycle of all forward chaining engines involves the selection of a
rule (checking the IF part), followed by the firing of that rule (executing the
THEN part).

When implemented as a Prolog program, the individual parts of the engine
can either succeed or fail, as indicated by the alternative yes and no
branches.

The Implemented Model

Forward chaining in flex is an elaboration of the simple model given above.
The implemented model is closer to the following flowchart:

3. Forward Chaining 35

flex toolkit

START

RESULT=0

RESULT=1

Is end
reached

?
Yes

No

Select a
rule ? No

Update
Agenda

?

Fire the
rule
?

Misfire
recovery

?

Yes

No No FAIL

Yes
Yes

No FAIL

Yes

3. Forward Chaining 36

flex toolkit

The basic cycle of chosing a rule and then firing that rule remains, but with
some elaborations.

1. In the simple model, the engine fires the first rule whose if part is satisfiable. A
more sophisticated approach is to go through all the currently available rules,
and check which ones are satisfiable. This forms a conflict set. Some algorithm
is then used to select a rule to fire from this conflict set (this is called conflict
resolution).

2. In the simple model, the engine terminates only when no more rules can be
selected. In the extended model the user can specify an alternative criterion (a
Prolog call) for early termination. The engine will terminate as soon as the call
succeeds, regardless of whether there are more rules which could be fired.

3. The extended model also allows for the handling of the misfiring of rules. A rule
is said to misfire if its conditions are satisfied but its actions fail for some reason.
A recovery corresponds to the specified misfire program succeeding, in which
case the cycle completes and the engine carries on. Otherwise an error
condition is raised.

4. The final extension to the simple model concerns the rule agenda, from which
rule selections are made during each and every cycle of the engine. This agenda
can be updated at the end of each cycle according to which rule was fired
during that cycle. For example, removing that rule from the agenda means that
rules can only be fired at most once during that particular forward chaining
session. Other possibilities include re-ordering the list of rules thus making it
more likely that certain rules will be fired next time.

Ruleset

Rules are grouped together into rulesets, and forward chaining is started
using the KSL keywords invoke ruleset. This provides a construct for
forming rules into stratified rule-bases and governing the forward-chaining
engine in terms of rule selection method and agenda updating.

For example, to move a piece in a game we might have a ruleset called
make_move containing rules for possible moves.

ruleset make_move
contains corner_move, edge_move, centre_move .

action move ;
invoke ruleset make_move .

3. Forward Chaining 37

flex toolkit

The Rule Agenda

The rule agenda determines the rules currently available to the inference
engine during forward chaining (initially specified by a ruleset). It might
include all of the rules in the system, or only a subset.

The rule agenda may contain duplicates, and there are no restrictions
whatsoever on which names can go into the list.

After a rule has been selected and fired, the rule agenda may be updated,
and it is this revised agenda that the inference engine uses as the basis for
the next cycle.

Setting The Initial Rule Agenda

The initial rule agenda is the set of rules from which the forward chaining
engine makes its first selection. The initial rule agenda may be specified as
containing all rules, a list of rules or a rule group.

The only mandatory part of a given ruleset is the definition of the initial
rule agenda.

ruleset everything
contains all rules .

This KSL sentence sets the initial rule agenda to contain all the rules
currently defined.

Selecting Rules

A vital part of any engine, whether forward or backward chaining, is the
method by which rules are selected. flex provides three built-in methods for
selecting rules:

First come first served

Conflict resolution

Conflict resolution with a threshold.

In addition, there is a facility for hooking in user-defined selection
algorithms.

3. Forward Chaining 38

flex toolkit

First Come First Served

The first come first served selection algorithm simply chooses the
first rule in the agenda whose conditions (the if part) are all satisfied. This
means that the order of rules in the agenda (actually represented as a list of
rule names) is very important. The major benefit of this simple scheme is
efficiency: firstly, during the cycle not all of the rules in the agenda are
considered, and secondly, no stacks or heaps need be set up to store
temporary sets of satisfiable rules.

For example, if the agenda contained 1000 rules we might strike lucky and
find that rule 5 can be fired.

The major drawback is a lack of control when choosing rules, since the only
control option available is to re-order the agenda. This, however, cannot
always reflect the relative importance of rules.

First come first served is the default selection algorithm for the ruleset.

For example:

ruleset mover
contains push, pull, lift .

ruleset make_tea
contains all rules ;
select rule using first come first served .

The selection algorithm used in both of these examples will be first come
first served.

Conflict Resolution

Conflict resolution is a more sophisticated and computationally expensive
selection scheme whereby the "best" rule is always selected. A conflict occurs
when more than one rule can be fired (i.e. the if conditions of more than
one rule are satisfied). This conflict is then resolved by choosing the rule with
the highest score. In the event of a tie the first is chosen.

This scheme certainly allows far more control over the selection phase, but
at a high cost. The "best" rule can only be chosen if every rule is considered.

For example, if the agenda contains 1000 rules then all of them need to be
tested, even though the best rule may be the 5th rule in the sequence. We
do not know for certain that it is the best rule until the other 995 have been
considered.

The following example assesses the scores of the rules whose conditions are
satisfied and fires the highest found.

ruleset mover
contains push, pull, lift

3. Forward Chaining 39

flex toolkit

select rule using conflict resolution .

Conflict Resolution with Threshold Values

A compromise between these two contrasting selection schemes, (first come
first served and conflict resolution), is to introduce threshold values into the
latter. This offers a conflict resolution scheme in principle, but which stops
as soon as a candidate is found whose score is greater than the threshold
value.

For example, if the agenda contained 1000 rules we might strike lucky and
find that the 5th rule can not only be fired, but also that its score is above
the threshold value that has been set. Thus this rule will be fired with no
further searching.

ruleset make_tea
contains all rules ;
select rule using conflict resolution

with threshold 6 .

This example assesses the scores of the rules whose conditions are satisfied
and fires the first rule found whose score is above 6.

In general, the higher the threshold value, the more rules that need to be
considered when searching.

The two selection strategies, first come first served and full conflict
resolution, can be seen as extreme cases of conflict resolution with threshold
values: the first come first served algorithm represents a threshold value of
minus infinity, and full conflict resolution represents a threshold value of plus
infinity.

Updating the Agenda

At the end of each cycle of the engine, the agenda can be updated
according to the name of the rule which was fired. The default is to leave the
set of rules exactly as it is, so that the rules are always considered in the
same order every time.

There are various built-in procedures for updating the agenda; alternatively
the flex programmer can provide a user-defined algorithm.

The options for updating the ruleset are as follows.

Each time a rule is fired it can be removed from the ruleset. This effectively
means that each rule is fired just once.

Each time a rule is fired it can be moved to the top or the bottom of the current

ruleset. Moving it to the top means it will be the first rule to be considered next
time round, or moving it to the bottom means it will be the last rule to be

3. Forward Chaining 40

flex toolkit

considered.

The rule agenda may be viewed as a cyclic queue, whereby the rule following the
selected rule is used as the top of the agenda for the next cycle.

The ruleset may be updated by removing from the rule agenda any rules whose
conditions were not satisfied in the last cycle of the forward chaining engine.

Finally a rule “network” may be specified enabling the agenda to switch between
different groups of rules for each cycle. Each rule group may be defined using
the KSL group construct, and after each rule is fired, the rule agenda becomes
the set of rules specified by the group with the same name as the rule which
was just fired.

In addition to these built-in update methods you may define your own.

It is also possible to disable and enable certain rules. See the built-in flex
predicates disable_rules/1 and enable_rules/1.

4. Data-Driven Programming 41

flex toolkit

4. Data-Driven Programming

The frame system of flex can be used for the representation of data and
knowledge. In this chapter we describe data-driven programming, where
rather than program the control-flow or logic of a system, procedures are
attached to individual frames or groups of frames.

These procedures lie dormant and are activated whenever there is a request
to update, access or create an instance of the frame or slot to which they
are attached. This concept of attached procedures, sometimes referred to as
active values, is also found in object-oriented programming.

Data-Driven Procedures

There are four types of data-driven procedures:

Launches

Watchdogs

Constraints

Demons

The following diagram shows when and where the various procedures are
invoked.

4. Data-Driven Programming 42

flex toolkit

data-driven procedures

frames slots

launches

accessing updating

watchdogs

before after

constraints demons

Launches

A launch procedure is activated whenever there is a request to create an
instance of the frame to which it is attached.

A launch procedure has three main parts:

• context A test to see whether certain conditions hold.

• test A test to see whether certain conditions hold.

• action A series of commands to be performed.

The action will only be invoked if the test succeeds. The launch is invoked
after the instance has been created.

Example

Suppose we have a frame system representing a company's personnel
structure, and that a new employee dave is to be added.

4. Data-Driven Programming 43

flex toolkit

The launch will automatically be invoked whenever a new instance of
employee is requested, and provided the conditions hold, the actions will
be performed.

create
new instance dave

test
is dave an employee

is dave male

action
do male enrollment

end

launch
new employee

employee

fail

succeed

The launch procedure in this example, attached to the employee frame, is
set up to collect the personal details about new male employees.

The KSL code for this example would be written as follows:

frame employee
default sex is male .

launch new_employee
when Person is a new employee
and sex of Person is male
then male_enrolment_questions(Person) .

instance dave is an employee .

The male_enrolment_questions will be defined elsewhere.

4. Data-Driven Programming 44

flex toolkit

Constraining the Values of Slots

A constraint is attached to an individual slot, and is designed to constrain
the contents of a slot to valid values. It is activated whenever the current
value of that slot is updated, and the activation occurs immediately before
the update.

A constraint has three main parts:

• context A test to see whether certain conditions hold.

• check A test to see whether the update is valid.

• error A series of commands to be performed for an invalid update.

The check will only be made if the context holds. If the check is successful
then the update is allowed, otherwise the error commands are invoked and
the update is not allowed.

Example

If we had a frame system representing instances of water containers, we
could put a constraint on the contents slot of any jug, such that when
the value for the particular slot is being updated, a test is performed making
sure that the new value is less than the value of the jug`s capacity, thus
ensuring the jug does not overflow!

In the example the constraint is activated if the contents attribute of any
jug changes. The prospective new value for the slot is then tested to see if it
is less than that jug's capacity. If the test succeeds the update is allowed. If
the test fails the update is not allowed and a message is displayed.

4. Data-Driven Programming 45

flex toolkit

jug

test
is updated contents
less than capacity

allow update

jug1

actions
write 'contents not

updated'

update slot
contents of jug1constraint

check_contents

contents

fail

succeed

fail update

The code for this example could be written as follows:

frame jug
default contents are 0 and
default capacity is 7 .

instance jug1 is a jug .

constraint check_contents
when the contents of Jug changes to X
and Jug is some jug
then check that number(X)
and X =< Jug`s capacity
otherwise write('contents not updated')
and nl .

Note the use of Jug, a local variable, which will unify with any frame or
instance which has, in this case, a contents attribute.

Attaching Demons to Slot Updates

A demon is attached to an individual slot. It is activated whenever the
current value of that slot is updated, and the activation occurs immediately
after the update.

A demon has two main parts:

4. Data-Driven Programming 46

flex toolkit

• context A test to see whether certain conditions hold.

• action A series of commands to be performed.

The slot is updated and then, given that the context holds, the actions will be
invoked.

A demon can be tailored such that it fires only for given values and/or only
under certain circumstances.

Example

If we are modelling the action of kettles, we could attach a demon to the
temp slot of any instance of the frame kettle.

kettle

allow update

test
temp becomes T
 and T is > 100

action
make_steam
and whistle

kettle1

end

update slot
temp of kettle1demon

kettle_boiling

temp

fail

succeed

Whenever the temp slot is updated, a check will be made on the new value,
such that, if it is greater than 100, then the actions make_steam and
whistle are performed.

The code for this example could be written as follows:

frame kettle
default temp is 0 .

instance kettle1 is a kettle .

4. Data-Driven Programming 47

flex toolkit

demon kettle_boiling
when the temp changes to T
and T is greater than 100
then make_steam
and nl
and whistle .

Restricting the Access to Slots

A watchdog is attached to an individual slot. It is activated whenever the
current value of the slot is accessed.

A watchdog has three main parts:

• context A test to see whether certain conditions hold.

• check A test to see whether the access is valid.

• error A series of commands to be performed if access is invalid.

The check will only be made if the context holds. If the check is successful
then the access is allowed. Otherwise, the error commands are invoked and
the access is denied.

A watchdog can be used to check the access rights to an attribute of a
frame. It is invoked whenever there is a request for the current value (not
the default value) of that slot (attribute-frame pair).

Example

In the example shown below, the watchdog is activated when the contents
of a file are requested. A check on the user's classification is then made, and
if the check succeeds the access is allowed. If the check fails the access is
denied and a warning message is displayed.

4. Data-Driven Programming 48

flex toolkit

file

test
user's access > 99 ?

allow access

file1

actions
warn_illegal_entry

access slot
contents of file1watchdog

file_security

contents

fail

succeed

fail access

The KSL for a similar example is shown below. In this case, only users with
sufficiently high access priority may find out the balance in a bank account.
The current_user frame stores the access code of the current user,
which is checked in the account_security watchdog.

frame bank_account
default balance is 0.

frame current_user
default name is '' and
default access is 0.

watchdog account_security
when the balance of Account is requested
and Account is some bank_account
then check current_user`s access is above 99
otherwise write('Balance access denied to user ')
and
write(current_user`s name).

5. Questions And Answers 49

flex toolkit

5. Questions and Answers

Most expert system applications will involve some communication with the
user. In flex, this is achieved by invoking pre-defined questions. These
questions may involve making a selection from a menu, typing information
at a keyboard, or indeed any set of operations which require a reaction by
the user.

Defining Questions

Questions are defined within a KSL program by use of the keyword
question. The main part of each question definition states how to obtain
an answer, and what form it should take. Flex provides certain built-in
constructs for obtaining answers, including single and multiple choice menus
and data input screens. More sophisticated user interactions can be defined
using the GUI facilities of the underlying Prolog system and can then easily
integrated with the flex question and answer sub-system using relations or
actions. Once a question is defined, it may be invoked using the KSL
directives ask or answer, described later.

Menu Selection

In a menu selection format question, the user is presented with a collection
of options, and is offered the choice of making either a single selection or
multiple selections. The attraction of this is that the values obtained are
implicitly validated, since they come from a fixed set of alternatives which
have either been hard-wired into the question or programmatically
generated.

Consider the problem of putting together a menu for some meal. The user is
allowed to choose various combinations of dishes to make up that meal. For
the main course, there is a straightforward choice between various meat
dishes and fish dishes, only one of which can be selected.

The KSL for describing this question would be as follows.

question main_course
Please select a dish for your main course ;
choose one of steak,'lamb chops',trout,'dover sole'

.

Whenever the question main_course is asked, the user is presented with a
menu containing the items steak, 'lamb chops', trout and 'dover
sole'. One, and only one, item can be selected from this menu.

5. Questions And Answers 50

flex toolkit

Rather than state the items explicitly within the definition of the question,
we can collect the items together and store them within a group. We can
then refer to this name within the question.

group main_courses
steak, 'lamb chops', trout, 'dover sole' .

question main_course
Please select a dish for your main course ;
choose one of main_courses .

Now, to accompany the main course there are various vegetables which can
be selected in any configuration. Using the KSL keywords choose some
of we can allow the user to select any number of vegetables.

question vegetables
Please select vegetables to accompany your main

course ;
choose some of potatoes, leeks, carrots, peas .

Storing Answers

Whenever a question is invoked, the “answer” to the question is stored as
the value of a global variable of the same name as the question. So, in the
above two examples, the answers to the questions are stored in the global
variables named main_course and vegetables respectively.

To test the above two questions we may define an action as follows. (Here
we use of the KSL construct check that to “retrieve” the value of a global
variable.)

action get_main_course(Main, Vegs) ;
do ask main_course and
ask vegetables and
check that Main is main_course and
check that Vegs is vegetables .

Then get_main_course/2 may be called from a Prolog program, or a flex
procedure, or run from the Prolog command line, e.g.

?- get_main_course(M, V).
M = steak, Vegs = [leeks, carrots, peas]

Alternatively we may define an action which simply prints out the values.

action show_main_course ;
do ask main_course and
ask vegetables and
write(main_course) and
nl and

5. Questions And Answers 51

flex toolkit

write(vegetables) .

?- show_main_course .
steak
[leeks, carrots, peas]

Keyboard Input

The second pre-defined question mechanism is through single field keyboard
input. The data entered can easily be constrained to be either a text item
(name), a floating-point number, an integer, or a set of such items.

Examples

question name_of_applicant
Please enter your name ;
input name .

question height_of_applicant
Please enter your height (in metres) ;
input number .

question address1_of_applicant
Please enter your house number ;
input integer .

question address5_of_applicant
Please enter your city and post code ;
input set .

Constrained Input

You can constrain the standard keyboard input to be something other than a
name, number, integer or set of such objects, by nominating a Prolog
program or flex relation to be used to validate the answer. This is indicated
by the keywords such that.

question yes_or_no
Please answer yes or no ;
input K such that yes_or_no_answer(K) .

relation yes_or_no_answer(yes) .
relation yes_or_no_answer(no) .

This will present a standard dialog (which will depend on your
implementation of flex), and the user's response must satisfy the
yes_or_no_answer relationship.

5. Questions And Answers 52

flex toolkit

Customized Input

The range of standard questions provided will inevitably not cover all
possible situations. For this reason, flex allows customized questions in
which the programmer can specify both how to obtain an answer, and what
form that answer should take. The onus is totally on the programmer to
present the question to the user (for example create a dialog) and to return
the appropriate answer. This is indicated by the KSL keyword answer.

question my_question
answer is K such that ask_my_question(K) .

In this case no predefined dialog will be presented, but a call will be made to
ask_my_question/1: this may be defined as a flex action, a flex relation
or as a Prolog predicate. It should ask the question, creating any necessary
dialogs, and return a value for the variable K.

Default Questions

When developing an application, it is often useful to delay the exact
implementation of questions until some later stage. During this development
process, flex allows you to declare a default question which is used in the
absence of a specific definition. The name of the default question is
catchall.

question catchall
Please enter data ;
input name .

Whenever a question is asked for which there is no definition, the
catchall definition is used instead. In this case, the default answer will be
of type name.

Explaining Questions

In addition to the form of a question, you can optionally attach an
explanation to any of the standard question types (as you can with rules)
using a because clause.

The explanation itself can either be some canned text to be displayed, or it
can be the name of a file to be browsed over. The explanations are
presented whenever the end-user requests them (usually there is an Explain
button in the built-in question dialogs).

5. Questions And Answers 53

flex toolkit

question main_course
Please select a dish for your main course ;
choose from steak, 'lamb chops', trout, 'dover sole'

;
because The main course is an integral part of a

meal .

question headache
Have you got a headache ? ;
answer is K such that yes_or_no_answer(K) ;
browse file medical_symptoms .

Whenever there is a request to explain the headache question, the user
begins browsing the file medical_symptoms starting at the headache
topic.

If explanations are attached to customized questions, then the onus is on the
programmer to reflect any explanations to the end-user.

 (Note that the following example will not work in MacProlog since there is
no support for byte-level keyboard input.)

Example

question headache
answer is K such that

write('Have you got a headache ?') and
yes_no_question(K, medical_symptoms) .

action yes_no_question(K, File) ;
do write('Please type Y or N or ESC')
and repeat
and get0(Byte)
and yes_or_no_check(Byte, K, File)
and ! .

relation yes_or_no_check(89, yes, File) .
relation yes_or_no_check(121, yes, File) .
relation yes_or_no_check(78, no, File) .
relation yes_or_no_check(110, no, File) .
relation yes_or_no_check(26, _, File)

if browse(File)
and fail .

Invoking Questions

There are two underlying procedures, ask/1 and answer/2, for invoking
questions. These are reflected in the KSL as the directive

ask <name of question>

and as the term

5. Questions And Answers 54

flex toolkit

answer to <name of question>

respectively. These built-in procedures behave quite differently at run-time.
Whenever there is a request to ask a question, that question is always asked
immediately. However, a request for the answer to a question will only
invoke that question if it has not previously been asked.

If the behaviour of an application is such that the same question should be
asked once, and only once, then use the answer to construct.

action decide_meal ;
do ask main_course
and ask vegetables .

In this case, using ask, the question dialogs will be displayed every time the
decide_meal action is executed. The global values of main_course and
vegetables will therefore change for each invocation of the
decide_meal action.

rule prescription1
if the answer to headache is yes
and the answer to pregnant is no
then prescribe(paracetamol) .

rule prescription2
if the answer to headache is yes
and the answer to pregnant is yes
then prescribe(nothing) .

In this example, the actual questions headache and pregnant will only be
asked if they haven’t previously been asked. Once there is a value for each
of headache and pregnant, this value will be used for the rest of the
session. The questions headache and pregnant will therefore only be
asked once.

6. Anatomy of a flex Program 55

flex toolkit

6. The Anatomy of a flex Program

This chapter describes the basic composition of a flex program using the
Knowledge Specification Language (KSL). The KSL’s structures and syntax
are described in more detail in the next chapter.

A flex program comprises a series of sentences written in the KSL
(Knowledge Specification Language). Each sentence starts with a KSL
keyword and ends with a full stop. These sentences are compiled into Prolog
clauses by the flex compiler. (See the Runtime Interpretation of KSL
chapter).

A KSL sentence begins with one of the following keywords:

action
constraint
data
demon
do
frame
function
group
instance
launch
question
relation
rule
ruleset
synonym
template
watchdog

These are all described in detail in the next chapter.

Note that a KSL program does not have to use forward chaining, and may
consist entirely of relations and actions, which are the equivalent of
backward chaining Prolog programs. For example, the following Prolog
program.

sibling(X, Y):-
parent(Z, X),
parent(Z, Y).

may be written using the KSL as follows.

relation sibling(X, Y)
if parent(Z, X)
and parent(Z, Y).

Either of these may be called from the Prolog command line, e.g.

6. Anatomy of a flex Program 56

flex toolkit

?- sibling(harriet, S) .

However, to use the flex forward chaining engine a minimal flex program
contains at least one of each of the following:

frame
rule
ruleset
action

The frames describe the data structures. The frames have slots (sometimes
called attributes), which are like fields in a conventional record structure.
The rules defined in a flex program manipulate the data contained in these
frames.

A flex rule consists of a set of conditions and some actions to be
performed if the conditions are satisfied. A rule is said to fire if its conditions
are satisfied.

A flex ruleset declares the names of the rules to be used for the current
problem.

The basic mechanism of the flex forward chaining engine is to go through
the current set of rules, testing the conditions, until a rule is found whose
conditions are satisfied, and its actions are then performed. This cycle
repeats until no more rules can be fired, i.e. there are no rules whose
conditions can be satisfied.

It is possible to specify other termination criteria, and to specify exactly
which rules should be considered, in what order, and how they should be re-
ordered for each cycle of the forward chaining engine. See the description
of ruleset in the next chapter.

The flex forward chaining engine may be started by defining an action,
which is similar to a Prolog program and may be run as a Prolog query.

A Simple flex Program

We may write a very simple flex program to sell cinema seats to viewers.
This will demonstrate the essential components of a forward chaining flex
program, and give a flavour of the KSL. (The constructs used here are
explained in more detail in the next chapter.)

Note that because this is KSL code it should be compiled in a file or window
with the extension .KSL. If you compile the KSL code contained in an
‘untitled’ window, it will be compiled as if it were Prolog code and errors will
be generated.

6. Anatomy of a flex Program 57

flex toolkit

The frames

First we define the data structures, which means declaring a frame for a
cinema and a frame for a cinema-goer. Each will have a single slot, or
attribute, which contains the number of seats for a cinema and the number
of tickets required by a viewer.

frame cinema
default seats is 500.

frame viewer
default tickets_required is 3.

The rules

We will define one rule, which describes how the cinema seats will be
allocated to the viewer. We will call this rule allocate_tickets. The
condition under which the rule will be fired is simply that the viewer requires
some tickets!

rule allocate_tickets
if the tickets_required of viewer is greater than 0
then the seats of the cinema becomes

the seats of the cinema
minus the tickets_required of viewer and

the tickets_required of viewer becomes 0.

The ruleset

Next, a ruleset must be defined to say what rules are to be considered.
We will call our ruleset seating; in this case we only have one rule, called
allocate_tickets.

ruleset seating
contains allocate_tickets.

The action

Finally, to set this going we invoke these rules, defining an action to do
so.

action go ;
do invoke ruleset seating.

Starting The Forward Chaining Engine

We now have a complete flex program. To start the flex forward chaining
engine, we simply run the Prolog query go (type go at the Prolog command
line).

?- go.

6. Anatomy of a flex Program 58

flex toolkit

This should succeed, with the given rule firing once only (because after that
the viewer's tickets required will be zero).

Displaying Results

Unfortunately, at the moment we have no way of knowing if it ran correctly,
i.e. if 3 seats were subtracted from the cinema's total seats. We will add
another action to simply write out some relevant values, called
write_values.

Here we will use the KSL operator `s instead of of for accessing the slots
of frames.

action write_values ;
write('Cinema seats: ') and
write(cinema`s seats) and
tab(2) and
write('Viewer tickets required: ') and
write(viewer`s tickets_required) and
nl.

Note the use of the built-in Prolog predicates write/1, tab/1 and nl/0
to write text, spaces and a new line. Any Prolog predicate may be called in
this way from flex; its arguments will be dereferenced by the flex interpreter
before executing (so that, for example, the term viewer`s
tickets_required will be dereferenced to the current value of the slot
tickets_required of the frame viewer).

By writing out the values before and after running flex, we may see that the
operation has been done correctly.

?- restart, write_values, go, write_values.
Cinema seats: 500 Viewer tickets required: 3
Cinema seats: 497 Viewer tickets required: 0

Note that restart/0 is a built-in flex predicate which resets slot values
back to their original values.

Extending the Program

In reality there would be more than one cinema and more than one viewer,
(so we would probably uses instances), and the forward chaining engine
would continue until there were no more viewers with
tickets_required values greater than 0. There would also need to be a
check that the number of tickets required was less than the number of seats
in the cinema.

rule allocate_tickets
if the viewer`s tickets_required is greater than 0
and the cinema`s seats is greater than or equal to

the viewer`s tickets_required
then the seats of the cinema becomes

the seats of the cinema

6. Anatomy of a flex Program 59

flex toolkit

minus the tickets_required of viewer and
the tickets_required of viewer becomes 0 .

A second rule could be added to inform the viewer that no seats were
available.

rule refuse_tickets
if the viewer`s tickets_required is greater than 0
and the cinema`s seats is less than

the viewer`s tickets_required
then write('Sorry - no seats left') and nl and

the tickets_required of viewer becomes 0 .

It would also be better if there was some user interaction so that at runtime
we could ask how many tickets the viewer wanted - for this we could use the
flex question construct.

flex and Prolog

flex is built on top of Prolog and all the functionality of Prolog is also
available to the flex programmer. Any Prolog predicate (either built-in or
user-defined) may be called from within flex, and its arguments will be
dereferenced before being called. Conversely, any action or relation
defined in the KSL may be called from Prolog as if it were a Prolog
program.

Applications may therefore be easily written as a mix of Prolog and flex.

However, we also provide full access to the flex system from Prolog alone:
you do not have to use the KSL at all. You may write flex programs entirely
in Prolog, using the flex predicates listed in the Flex Predicates chapter of
this manual. For each KSL sentence there is an equivalent set of Prolog
predicates. Alternatively you may write part of your code using the Prolog
flex predicates provided, and write part of your code using the KSL. Prolog
and KSL code may be freely intermixed.

Note that you will normally have to compile KSL and Prolog code
separately; KSL code should be stored in a file or window with the extension
.KSL. If you compile the KSL code contained in an ‘untitled’ window, it will
be compiled as if it were Prolog code and errors will be generated.

Components of the KSL

The KSL contains terms, formulae, and sentences.

The terms describe the objects in the world being defined.

The formulae are used to describe the relationships between different
objects of the KSL.

The sentences of the KSL are valid statements which relate the formulae

6. Anatomy of a flex Program 60

flex toolkit

and terms.

A KSL program comprises a series of sentences.

7. Knowledge Specification Language 61

flex toolkit

7. The KSL

This chapter describes all the elements of the KSL. See also the chapter on
flex Predicates for the equivalent Prolog predicates, and the chapter on the
Run-Time Interpretation of KSL for a description of how the KSL is
compiled into Prolog.

KSL Terms

This section describes the valid tokens and terms of the KSL. Essentially
they follow the tokenisation of Prolog's Edinburgh syntax, with a few
enhancements.

There are five types of Edinburgh token: punctuation, number, atom,
string and variable. Built on top of Edinburgh tokens are the concepts of a
KSL name and a KSL value.

Comments

Any text between the symbols /* and */ is treated as a comment and is
ignored by the flex compiler.

The % symbol indicates the start of a comment up to the end of the line on
which it occurs.

Punctuation

A punctuation mark is always considered as a separate token (unless it lies
within quotes), and is one of the following:

() [] { } | ! ; ,

Numbers

Numbers are either integers or floating-point numbers.

Examples

211327 -32768 0 2.34 10.3e99 -
0.81

Atoms

Atoms are of three types: alphanumeric, symbolic and quoted.

An alphanumeric atom is a lowercase letter (a-z) followed by a sequence of
zero or more alphabetic characters (a-z, A-Z or _) or digits (0-9).

7. Knowledge Specification Language 62

flex toolkit

Examples

apple aPPLE h45j apple_cart

A symbolic atom is a contiguous sequence of symbols such as *, >, or #.
The symbolic characters are all those characters other than digits (0-9),
alphabetic (a-z, A-Z and _) and punctuation marks.

Examples

& >= #@& **/

A quoted atom is any sequence of characters delimited by single quotes (use
two quote characters to denote a single quote within a quoted atom).

Examples

'Apple' 'The green ***' '^h''ht'

Byte Lists

A Prolog byte list is any sequence of characters delimited by double quotes.
It is an abbreviated notation for the list of decimal ASCII codes of the
characters in the sequence.

Examples

"A boy" is shorthand for [65,32,98,111,121]
"" is shorthand for []

Variables

A variable is an uppercase letter (A-Z) or an underscore (_), followed by a
sequence of zero or more alphabetic characters (a-z, A-Z or _) or digits (0-9).
An underscore on its own is an anonymous (don’t care) variable.

Examples

X Apple X_Apple _23

Names

A name is any quoted atom, or any atom which is not a reserved word (i.e.
an atom which does not appear in the glossary of the KSL).

Examples

brick brick32 'The' 'the brick'

Values

A value is any number, any string or any name.

7. Knowledge Specification Language 63

flex toolkit

Examples

9821 -0.81 "the empty string follows" ""
'the'

7. Knowledge Specification Language 64

flex toolkit

KSL Objects

This section describes the actual objects of KSL (i.e. constructs which
correspond to entities in your particular domain). They range from variants
which can change in value through time (by assignment) to set abstractions
which portray a collection of objects.

Variants

A variant can change in value over time (i.e. like a variable). There are
essentially two forms of variant: a straightforward global variable, or a slot.
Both of these have values associated with them.

A global variable is any name whatsoever, optionally be prefixed by the
determiner the.

Examples

staff
the staff
'today''s temperature'

A simple slot is specified by the name of an attribute and the name of the
frame (or frame instance) to which the attribute belongs, using the KSL
keyword of or the operator `s. (Note the use of the backwards quote
character `.) The attribute or frame may be optionally prefixed by the
determiner the. The general formats of slots are as follows.

frame`s attribute
attribute of frame
the attribute of the frame

Examples

size of the collar
the collar`s size
the colour of money
money`s colour

Variant Schema

The variant schema is a generalisation of slots by which the name of the
frame is only indirectly referred to. That is, the variant is a specific attribute
of some under-specified frame, rather than any particular frame.

The first kind of variant schema does not mention any particular frame at
all. These are don't care constructs, in which the name of the frame is
irrelevant, only that one exists. The general format is as follows.

attribute of anything
attribute of something

7. Knowledge Specification Language 65

flex toolkit

attribute of anybody
attribute of somebody

Examples

the colour of anything
a product of something
anybody`s address

The second type of variant schema is similar in that the name of the actual
frame is irrelevant, but the class is specified - the slot must belong to a frame
or instance of the class. The general format is as follows.

attribute of some frame
attribute of any frame
attribute of some instance of frame
attribute of any instance of frame

Examples

the skin of any reptile
the capacity of some instance of cinema
some brick`s shape
any fruit`s taste

Complex Variants

The previous two sections described variants referring to an attribute of a
frame. This concept may be extended with arbitrary levels of indirection,
also referred to as attribute-chaining.

The value assigned to an attribute of a frame can itself be the name of
another attribute or frame. For example, the employee_address attribute
of the employee frame can have the value address, which is the name of
another frame. We can then refer to other attributes of the address frame.

Examples

the city of (the employee_address of the employee)
city of employee_address of some employee
some employee`s employee_address`s city
(a1 of frame1) of ((a2 of frame2) of frame3)

where the value of a1 of frame1 and the value of a2 of frame2 are the
names of other attributes, say a11 and a22. Then, the value of a22 of
frame3 must be the name of another frame, say frame33. Finally, the
term reduces to the value of a11 of frame33.

Sets

There are two forms of sets in KSL; an explicit collection of objects or a set
abstraction which implicitly defines the collection.

7. Knowledge Specification Language 66

flex toolkit

An explicit set is a description of each and every individual element in the
set. Set elements may be separated by a comma or the KSL keywords or or
and.

Examples

{ fred, angela, john and mary }
{ the staff or fred }
{ the staff or fred and mary }
{ 10, 20, 30, 40, 50 }

NOTE An explicit set in flex corresponds to a list in Prolog. The KSL uses
curly brackets {} for sets, whereas Prolog uses square brackets [].

An implicit set states how to find or compute each individual element
without necessarily mentioning each one.

Examples

{ X such that generate_number(X)
and X >= 0 and X < 10 }

{ X : bird(X) or reptile(X) and can_fly(X) }

Alternatively, an implicit set can be all the members of a particular group,
specified by the keywords all, every, or each.

Examples

all colours
every dessert
each flower

And finally, an implicit set can be a collection of frame instances which have
particular attributes. The keyword whose may be used to refer to attributes
of a frame.

Examples

every instance of animal
every reptile

whose skin is smooth
and whose ears are not large
and whose legs > 2
and whose habitat includes { river or ocean }
and whose skin is included in { fur, scale } .

General Terms

General terms include names, values, variables, variants, variant schemas
and sets. In addition, there are some special constructs described here.

A compound term is, like in Prolog, the name of the principal functor
followed by a sequence of arguments within parentheses.

7. Knowledge Specification Language 67

flex toolkit

Examples

factorial(45)
foo(alpha , beta , gamma)
foo(the staff , { john and mary })

A conditional term consists of a test and two alternative sub-terms. Which
sub-term is chosen depends upon the success or failure of the test. The
general format is as follows.

if condition(s) then expression1 else expression2

Examples

if positive(X) then 1 else 0
if test1 or test2 and test3 then volume else density

Another kind of conditional term refers to instances of some formulae.

Examples

X such that number(X) and prime(X)
X : X is -1 or X is 0 or X is 1

A term can refer to an individual member of a group, without stating
explicitly who that member is, using some, any, some instance of or
any instance of.

Examples

any colour
some dessert
any instance of jug

A term can refer to an instance of a frame which has certain attributes.
Again, such terms do not explicitly state which instances. Once again the
keyword whose may be used to refer to attributes of a frame.

Examples

some instance of animal
some reptile

whose skin is smooth
and whose ears are not large
and whose legs > 2
and whose skin is included in { fur, scale } .

A term can self-reference a particular attribute without naming the frame (or
frame instance) involved. This construct only has a meaning when used as
part of the definition of a slot (i.e. frame-attribute pair). KSL keywords which
may be used are whose (as in the above example), its or their.

7. Knowledge Specification Language 68

flex toolkit

Examples

its density
their colours
some box whose width is less than its depth

A term can refer to the answer to a particular question which may have
already been asked. If not, the question is asked when the answer is first
requested.

Examples

the answer to entree
the answer to dessert

Here entree and dessert will have been defined as question
constructs.

There are three special names for denoting the empty set:

empty
nobody
nothing

There are four special anonymous names to be used when you do not need
to state who or what the individual is.

somebody
something
anybody
anything

Arithmetic Expressions

Arithmetic expressions are formed by binary operators *, +, -, / and ^ and
unary operator - over terms. The words plus, minus, times, divided
by and to the power of may also be used.

The usual operator precedence apply, with ^ more binding than * and /
which are in turn more binding than + and -.

Operator associativity is to the left whenever more than one operator of the
same precedence appears in the expression.

Examples

1 + 2 * 3 - 4 / 5 ^ 6
the number of managers plus the number of secretaries
X`s mileage times 30
the contents of jug1 minus the contents of jug2
the box`s size to the power of 3

7. Knowledge Specification Language 69

flex toolkit

The precedence of operators can be overridden by enclosing the expression
within brackets.

Examples

(1 - 2) * (3 + 4)
(its temp times its volume) to the power of 2

Dereferencing

Unlike Prolog, expressions in flex are automatically dereferenced and
evaluated when required. For example, any reference to the name of a slot
or a global variable will automatically cause that slot or variable's current
value to be accessed and used.

This dereferencing can be suppressed by prefixing the term with the $
symbol. Any term prefixed with $ will be taken literally and no attempt will
be made to evaluate it as a flex entity. This means that the name of a frame
or attribute when prefixed by $ will be treated simply as text with no
reference to its flex status.

For instance, consider the following code.

action writer ;
do ask toys
and write($toys)
and nl
and write(toys) .

question toys
Which toys would you like? ;
choose some of doll, teddy, train, jigsaw, paints .

If we now execute the writer action on the Prolog command line, we will
see that we get back two written values. The first is the absolute value of
toys, namely the atom itself (because of the use of the $ symbol), and the
second is the current value that toys evaluates to, which in this case, is the
list of items selected from the toys question.

?- writer.
toys
[teddy, train, paints]

7. Knowledge Specification Language 70

flex toolkit

KSL Formulae

The formulae of KSL are used to establish relationships between the objects
of KSL. These fall into two distinct areas.

 Conditions test whether or not something is currently true.

Directives change the current state of an object to some new state.

Conditions

A condition formula is used to test the current state (for example of global
variables, frames or facts).

Conditions either test for the existence of a variant or compare the value of
two expressions; a condition may also be a procedure call.

Equality Comparison

The simplest comparison of two terms is a straightforward equality (or
inequality) test. To test for equality use the arithmetic operator = or the KSL
keywords

is
are
is equal to

Any of these may be used with not.

Examples

alpha = beta / 2
jugA`s contents are jugA`s capacity
the size of some brick is equal to 4
the employee`s name is phil

not alpha = beta
not the pupil`s mark is below 70

X is an elephant
X is a kind of animal whose ears are small

To test for inequality, use the arithmetic operator \=, or the KSL keywords

not equal to
different from.

7. Knowledge Specification Language 71

flex toolkit

Examples

the temperature \= the 'freezing point' of water
the staff are not equal to nothing
the capacity of jugA is different from jugA`s volume

Existence Test

A test for the existence of a variant is to decide whether or not it has a
current value. For this use either of the KSL keywords

known
unknown.

Examples

the starter of the meal is unknown
the temperature is known

Direct Comparison

A direct comparison of two terms uses the built-in typographical ordering
of Prolog terms. For comparison, use the arithmetic operators >, <, =<, >=,
or the KSL keywords

greater than
greater than or equal to
above
at or above
less than
less than or equal to
below
at or below

Any of these may be prefixed by not.

Examples

alpha > beta / 2
the temperature =< the 'freezing point' of water
the pupil`s mark is not below 50
the temperature is at or above boiling_point
the likelihood of frost is less than probable
the food`s calories is less than or equal to 400

Relative Comparison

The relative comparison of two terms is determined by their relative
positions within a defined group construct. The group can be specified
explicitly as an ordered set, using the KSL keywords according to, or
implicitly by name (i.e. a group previously defined).

Any of the above direct comparison operators may be used to define the
type of the comparison.

7. Knowledge Specification Language 72

flex toolkit

Examples

its colour is at or above the colour of money
according to { red , blue , white , green }

group fuzzy_ordering
certain, probable, possible, unlikely, impossible .

the likelihood of frost is less than probable
according to fuzzy_ordering

Set Membership

To test set membership, use the KSL keywords

include
includes
included in
does not include
do not include.

Examples

the staff include { john and mary }
a surprise is included in the contents of the box
the Rodent`s tail does not include bushy

Procedure Calls

A condition can be a call to some procedure, either a flex relation, a
flex action, or a Prolog call (either built-in or user-defined) . It is the means
by which conditions (and thus rules and attached procedures) link into
Prolog's backward chaining execution mode.

Conjunctions and Disjunctions

Conditions may be logically combined using and and or. The precedence
associated with negations, conjunctions and disjunctions (not binds more
tightly than and, which in turn binds more tightly than or) can be
overridden by the introduction of square brackets.

Examples

C is some cat and M is C`s meal
test1 and [test2(X) or alpha > 10]
not [test1 and test2]

Context Switching

If you wish to use a condition, but the context expects a directive, then the
context can be switched by the use of the word check, optionally followed
by the word that. For example, an action requires directives but a
relation requires conditions.

7. Knowledge Specification Language 73

flex toolkit

Examples

relation emp_name(Emp, Name)
if Name is Emp`s name .

action emp_name(Emp, Name) ;
do check that Name is Emp`s name .

Directives

Directives are used to change the current state to some new state, where a
state consists of the global variables, frames, facts and exceptions.

The changing of global variables and frames are assignments, whereas the
addition and removal of facts and exceptions are classed as database
maintenance.

Direct Assignments

An assignment consists of a variant on the left hand side and an expression
on the right hand side. An assignment will replace any existing value for the
variant with the value of the expression. The general formats of a direct
assignment are as follows.

Variant := Expression
Variant become Expression
Variant becomes Expression

Examples

methane_level := high
the kettle`s temperature becomes 45
the cinema`s films become { 'Pulp Fiction', 'Apollo 13'
}

Incrementing and Decrementing

Arithmetic values can be incremented or decremented, using the following
KSL formats.

add Expression to Variant
subtract Expression from Variant

Examples

add 100 to the car`s mileage
add X`s contents to Y`s contents
subtract X`s spare_capacity from the jug`s contents
subtract 1 from the total

Important Note

Incrementing and decrementing work on the current value of an attribute. If
an attribute has no current value, the effect of adding to it will be to set the
current value, i.e. a direct assignment. An attempt to subtract from a slot

7. Knowledge Specification Language 74

flex toolkit

with no current value will fail.

7. Knowledge Specification Language 75

flex toolkit

Set Membership

In a similar way, sets may be incremented or decremented using the
following KSL formats.

include Item(s) in Set
remove Item(s) from Set

Note that if there is no existing current value then it is equivalent to direct
assignment, as above. An attempt to remove an item when there is no
current value will fail.

Examples

include lemon_sole in the entree of set_meal
include { fred and mary } in the prizewinners
remove land from the whale`s habitat
remove { david and liz } from the staff

New Instances

Directives can dynamically create new instances of frames with local
attributes. All other attributes of the parent frame will automatically be
inherited by the instance. The general KSL format is as follows.

Instance is a new Frame
Instance is another Frame

The whose keyword may optionally be used to create or assign values to
local attributes.

Examples

brick8 is another brick
'Tiddles' is another cat whose owner is alexander
plant33 is a new plant whose size is medium
house_2 is a new house whose bedrooms is 4

and whose floors is 2
and whose extras are { garden, garage }

7. Knowledge Specification Language 76

flex toolkit

Database Maintenance

Database maintenance is accomplished by directives which add assertions
to, or delete assertions from both the positive (facts) and the negative
(exceptions) databases. Facts may be added and removed using the KSL
keywords

remember
remember that
forget
forget that

Examples

remember that pregnant(P)
remember likes(alexander, harvey)
remember not raining
forget danger_level(red)
forget that not boiling

Questions

A very specific directive is the asking of a question, using the KSL keyword
ask.

ask Question

Examples

ask starter
ask password

The questions starter and password will be defined elsewhere (using the
question keyword).

Procedure Calls

Finally, a directive can be a call to some procedure. It is the means by which
directives (and thus rules and attached procedures) link into Prolog's
backward chaining execution mode.

7. Knowledge Specification Language 77

flex toolkit

KSL Control Structures

The control structures in flex fall into two categories: conditional statements,
and control loops.

If-Then-Else

Directives and conditions can be combined to form if-then-else
statements.

if-then-else statements test a given condition, and if the condition holds
the directives indicated by then are performed, otherwise the directives
indicated by else are performed.

The basic format of an if-then-else loop is:

if condition(s)
then directive(s)
else directive(s)
end if

There may be multiple conditions combined with and or or, and there may
also be multiple directives combined with and.

Examples

action print_result ;
do if the result of test is greater than 50

then write('You have passed')
else write('You have failed')

end if .

action test_mileage ;
do if the mileage of the car is greater than 20000

or the age of the car is greater than 2
then subtract 300 from the car`s value

and add 20 to the car`s premium
else add 30 to the car`s premium

end if .

Repeat-Until Loops

A repeat-until loop repeats the given directive until a condition holds.
The directive is performed before the test is made.

7. Knowledge Specification Language 78

flex toolkit

The basic format of a repeat-until loop is:

repeat directive(s)
until condition(s)
end repeat

Example

The following action repeatedly adds one to the current value of the up
attribute of count and subtracts one from the current value of the down
attribute of count until the up value is greater than or equal to the down
value.

action balance ;
do repeat add 1 to the up of count

and subtract 1 from the down of count
until the up of count >= down of count
end repeat

and write('Balance ')
and write(up of count) and tab(1)
and write(down of count) and nl .

Note the use of the built-in Prolog predicates write/1, tab/1 and nl/0.

Recall that the increment and decrement operators, add and subtract,
only increment and decrement the current values of attributes. If there is no
current value the directive subtract will fail. In the case of the add
directive, if there is no current value the increment will be assigned to the
current value of the slot.

While-Do Loops

While loops repeat the given directive while a condition holds. The directive
is performed after the test is made. The basic format of a while-do loop is
as follows.

while condition(s)
do directive(s)
end while

Example

The following action would be used to remove from the customer loan
records of a bank all instances of customer whose loan has been repaid.

action remove_paid_customer ;
do while Customer is some customer

7. Knowledge Specification Language 79

flex toolkit

and the loan of Customer is paid
do remove_instance(Customer)
end while .

For Loops

Simple for loops repeat the given directives for every solution found to a
given condition.

The basic format of a for loop is:

for condition(s)
do directive(s)
end for

Examples

The following action could be used to print the names of all the instances
of employee, adding a new line between each (nl/0 is a built-in Prolog
predicate).

action print_employees ;
do for every Name is some instance of employee

do write(Name) and nl
end for .

Extended For Loops

Extended for loops repeat the given directives while an index steps from
one limit to another.

The basic format of a for-from-to-step loop is:

for counter
from expression1
to expression2
step expression3
do directive(s)
end for

If the step expression3 is omitted, the counter will be incremented
in steps of 1.

Example

The following action steps through values for X from -20 to 20 in steps of 5,
and for every value of X steps through the values of Y from -20 to 20 in
steps of 1, and for each Y value prints the value of X times Y.

7. Knowledge Specification Language 80

flex toolkit

action multiply ;
do for X from -20 to 20 step 5

do for Y from -20 to 20
do write(X * Y) and nl
end for

end for .

7. Knowledge Specification Language 81

flex toolkit

KSL Sentences

The previous sections have described the valid KSL representations for
objects and the relationships between them.

In this section we describe the valid sentences in which such objects and
formulae can occur. They constitute what can and cannot be stated in a KSL
program.

A KSL sentence begins with one of the following KSL keywords.

action
constraint
data
demon
do
frame
function
group
instance
launch
question
relation
rule
ruleset
synonym
template
watchdog

Each sentence is terminated by a space and a full-stop.

7. Knowledge Specification Language 82

flex toolkit

Frames

There are three parts to the definition of a frame:

1. The first part of a frame specifies whereabouts in the hierarchy of frames it
exists, by specifying its parent frames (if any). The frame hierarchy
determines how attributes are inherited.

2. The second part of a frame is optional and specifies what the default
attributes of a frame are. The defaults remain throughout the life-span of the
frame, and are used in the absence of any current value being assigned.

3. The third and final part to a frame is also optional and represents a
refinement of the inheritance hierarchy. Alternative parent frames can be
nominated for the inheritance of specific attributes, or specific attributes may
be declared not to be inherited.

The general format of a frame is as follows.

frame Name
default Attribute1 is Value ;
inherit Attribute2 from Frame .

The simplest example of a frame is a declaration of the frame’s name only.

Example

frame toy .

To this may be added some default values for its slots.

Examples

frame picture
default colour is red and
default shape is oval and
default pen_size is thin and
default link is arrow.

frame text_spec
default size is 12 and
default font is 'Courier' and
default style is normal.

frame computer
default memory is 24 and
default disk is 500 and
default accessories are

{ monitor and keyboard and mouse } and
default speed is 66.

To specify the parents of a frame, use the keywords

is a

7. Knowledge Specification Language 83

flex toolkit

is a kind of.

Examples

frame macintosh is a kind of computer .

frame green_picture is a picture ;
default colour is green .

To specify inheritance of particular attributes, use the keywords

inherit ... from
do not inherit.

Examples

frame wedge is a kind of block , toy ;
do not inherit shape and
inherit volume from block and
inherit density from pyramid, toy .

frame block
default volume is its size to the power of 3 and
default shape is regular ;
inherit usage from toy .

Instances

An instance is a particular instance of a frame, differing from the frame
itself in that an instance can have only one parent frame, can have no
children, and all its values are deemed to be current values (so it may not
have default values declared).

Instances may have inheritance declared as for frames.

For instances, use the KSL format

instance Instance is a Frame ;
Attribute is Value .

or
instance Instance is an Frame
instance Instance is a kind of Frame
instance Instance is an instance of Frame

Examples

instance brick7 is an instance of brick ;
shape is cuboid .

instance tweety_pie is a kind of bird ;
habitat is a cage and
predator is tom ;
do not inherit motions .

instance smudge is a cat ;
meal is rabbit .

7. Knowledge Specification Language 84

flex toolkit

instance silky is a cat ;
meal is chicken and
drink is milk .

7. Knowledge Specification Language 85

flex toolkit

Rules

A rule is a forward chaining rule and is the construct which is used during
each cycle of the forward chaining engine.

The major parts of a rule are the conditions which must be satisfied before
the rule can fire, and the directives which constitute the firing mechanism.

In addition there may be an explanation associated with the rule.

Finally, a score may be attached to the rule to indicate its priority (the higher
the score the more likely it is to be fired). Such scores are used to resolve
conflicts whenever more than one rule can be fired at any one time.

The general format of a rule is as follows.

rule rule_name
if condition(s)
then directive(s) ;
because explanation ;
score score .

The because and score parts are optional.

Examples

rule prescribe_lomotil
if the patient`s complaint is diarrhoea and
the patient`s disorders

do not include liver_disorder and
not pregnant(patient)
then advise(patient, lomotil) .

rule feed_cat
if C is some cat

and C`s condition is hungry
then feed(C, C`s food)
and C`s condition becomes fed ;
because We need to feed hungry cats ;
score 5 .

7. Knowledge Specification Language 86

flex toolkit

Rulesets

The ruleset is the construct which governs the running of the forward
chaining engine. Defining the ruleset determines which rules will be
considered for firing (i.e. the initial rule agenda), in what order they will be
considered, when the forward chaining will terminate etc.

Recall that each cycle of the forward chaining engine fires one rule, that rule
being the first rule found whose conditions are satisfied (or the rule with the
highest score out of all rules whose conditions are satisfied, if conflict
resolution is being used). The search for the rule to fire always starts at the
beginning of the list of rules in the current rule agenda. Rules may be
removed, added or re-ordered after each cycle.

A flex program is run by starting the forward-chaining engine, using the
KSL directive invoke ruleset; normally this will be as part of an
action, which can then be run from the Prolog command line as a normal
Prolog query.

Within a ruleset you can specify:

• The initial rule agenda (this is mandatory).

• The initiation directives to be performed prior to starting the engine.

• The conditions which can terminate the engine.

• The rule selection algorithm to be used.

• The rule agenda update algorithm to be used.

• The procedure to be used when a rule misfires.

Any combination of the above specifications may be included in the
definition of a ruleset. The only specification which is mandatory is the initial
rule agenda; all other specifications are optional.

The most general format of a ruleset is as follows.

ruleset Name
contains rule(s) ;
initiate by doing directive(s) ;
terminate when conditions(s) ;
select rule using rule_selection ;
update ruleset agenda_update ;
when a rule misfires do directive(s) .

Specifying The Initial Rule Agenda

The simplest declaration of a ruleset is just to state which rules are to be
used, using the KSL keyword

7. Knowledge Specification Language 87

flex toolkit

contains

In this case flex will use the rules in the given set, starting at the top of the
list for each cycle, and terminating when no more rules can be fired (i.e.
when there are no rules whose conditions can be satisfied).

If all currently defined rules are to be included, use the KSL keywords

all rules.

Examples

ruleset example_set1
contains all rules .

This declares that the ruleset should contain all the rules currently
defined.

ruleset mover
contains push, pull, lift .

The initial rule agenda will contain the rules push, pull and lift.

ruleset example_set2
contains packing_rules .

Sets the initial rule agenda to the rules defined by the group
packing_rules (this will have been declared as a KSL group construct).

Initialisation Routines

Some initial actions may optionally be specified which will be performed
before the forward chaining engine is started. For this use the KSL
keywords

initiate by doing

followed by one or more directives.

Examples

ruleset example_set2
contains all rules ;
initiate by doing write('Starting') and nl .

This allows a message to be output before the forward chaining begins .

ruleset my_rules
contains my_rule1, my_rule2, my_rule3 ;
initiate by doing action1 and action2 and action3 .

This declares that the three actions action1, action2 and action3
should be performed before the forward chaining engine starts.

7. Knowledge Specification Language 88

flex toolkit

Terminating The Engine

Termination conditions may be set for a particular ruleset using the KSL
keywords

terminate when

followed by some conditions. This provides an alternative way of stopping
the flex program: without termination conditions the forward chaining
engine stops when no more rules can be fired.

Examples

ruleset example_set4
contains all rules ;
terminate when condition1 and condition2 .

This specifies that the forward chaining engine will stop when both
condition1 and condition2 are satisfied (even if there are still some
rules which could be fired).

ruleset pack_shopping
contains pack_small_items, pack_large_items ;
terminate when the shopping is empty .

This specifies that the forward chaining engine will stop when the value of
shopping becomes empty.

Selecting Rules

Normally flex will consider each rule in the order specified in the ruleset.
However, a number of alternative rule selection criteria may be applied
instead, using the KSL keywords

select rule using.

The default rule selection is first come first served, which
considers rules in the order in which they are given and fires the first rule
whose conditions are satisfied.

ruleset example_set5
contains all rules ;
select rule using first come first served .

The rule selected for each cycle is the first rule in the agenda whose
conditions are satisfied. This is the default for selecting rules and is
equivalent to omitting any rule selection criteria.

Rules may be selected using conflict resolution. In this case an
attempt is always made to use the “best” rule according to the scoring
system built into the rules. Each rule should have a score associated with it,
and the conflict resolution system then fires the rule whose conditions are

7. Knowledge Specification Language 89

flex toolkit

satisfied with the highest score.

ruleset example_set6
contains all rules ;
select rule using conflict resolution .

Note that there is a high cost to using conflict resolution since every rule
must be tested before the highest score is known.

An adaptation of conflict resolution is to set a threshold value, so that the
first rule whose conditions are satisfied and whose score is greater than the
threshold value will be fired. This reduces the search somewhat.

ruleset example_set7
contains all rules ;
select rule using conflict resolution

with threshold 7 .

The rules are selected using the conflict resolution scoring system with a
threshold value (in this example the threshold value is 7).

Finally, the flex programmer may specify a routine which makes a rule
selection from the current agenda.

ruleset example_set8
contains all rules ;
select rule using my_selector .

Here flex will look for a program called my_selector/3 which should be
defined with three arguments:

my_selector(RuleAgenda, RuleConditions, Actions)

where at the time of the call RuleAgenda will be instantiated to a list of the
names of the rules currently in the rule agenda, and RuleConditions and
Actions are variables which my_selector should bind to the conditions
and actions respectively of the required rule. For more information see the
description of the predicates new_rule/5, isa_rule/5 and
forward_chain/5 in the "flex Predicates" chapter of this manual.

Updating The Rule Agenda

Each time a rule is fired, there is the option of updating the rule agenda for
the next cycle of the forward chaining engine. The default is to leave the set
of rules exactly as it is, so that the rules are always considered in the same
order every time. Other options may be specified using the KSL keywords

update ruleset

The options are as follows.

Each time a rule is fired it can be removed from the ruleset. This effectively

7. Knowledge Specification Language 90

flex toolkit

means that each rule is fired just once.

ruleset example_set9
contains all rules ;
update ruleset by removing each selected rule.

Each time a rule is fired it can be moved to the top or the bottom of the
current ruleset. Moving it to the top means it will be the first rule to be
considered next time round, or moving it to the bottom means it will be the
last rule to be considered. These two options are specified as follows.

ruleset example_set10
contains all rules ;
update ruleset by promoting each selected rule.

ruleset example_set11
contains all rules ;
update ruleset by demoting each selected rule.

The rule agenda may be viewed as a cyclic queue, whereby the rule
following the selected rule is used as the top of the agenda for the next
cycle.

ruleset example_set12
contains all rules ;
update ruleset by cyclic rotation of rules .

The ruleset may be updated by removing from the rule agenda any rules
whose conditions were not satisfied in the last cycle of the forward chaining
engine.

ruleset example_set13
contains all rules ;
update ruleset by removing any unsatisfied rule.

A rule “network” may be specified enabling the agenda to switch between
different groups of rules for each cycle. Each group may be defined using
the KSL group construct, and after each rule is fired, the rule agenda
becomes the set of rules specified by the group with the same name as the
rule which was just fired.

ruleset example_set14
contains all rules ;
update ruleset using rule transition network.

Finally, in addition to these built-in update methods you may define your
own.

ruleset example_set15
contains all rules ;
update ruleset using user_update .

In this case flex will look for a definition of user_update/3 (which may be

7. Knowledge Specification Language 91

flex toolkit

a flex action or relation or a Prolog program) which should be defined
as follows:

user_update(SelRule, Rules, NewRules)

where at the time of the call, SelRule will be the name of the rule just
fired, Rules will be a list of the names of the other rules currently in the
agenda, and NewRules will be a variable which user_update should bind
to a list of the names of the rules to be used as the next rule agenda.

Specifying Misfire Procedures

Sometimes rules may misfire, meaning the conditions of a rule may be
satisfied but the actions may fail or cause an error for some reason. You
may specify what action is to be taken if this happens, using the KSL
keywords

when a rule misfires do

followed by one or more directives.

You can choose to ignore the misfiring of rules by giving true as the
misfire procedure. This means the forward chaining engine will continue
with its next cycle as if nothing happened.

ruleset example_set16
contains all rules ;
when a rule misfires do true .

You can choose to fail the forward chaining engine when a rule misfires by
giving fail as the misfire procedure.

ruleset example_set17
contains all rules ;
when a rule misfires do fail .

Finally you can choose to define your own procedure to process the misfire.

ruleset example_set18
contains all rules ;
when a rule misfires do my_misfire .

In this case flex will look for a definition of my_misfire/1 (which may be
a flex action or a Prolog program) which should be defined as follows:

my_misfire(Rule)

where at the time of the call, Rule will be the name of the rule which just
misfired.

Actions

An action is a collection of directives to perform. It is similar to the

7. Knowledge Specification Language 92

flex toolkit

definition of a Prolog predicate, except only one definition of each action is
allowed. An action may have any number of arguments.

An action may be executed either from the Prolog command line, or from
within a flex relation, a flex rule or another action, or from within a
Prolog program.

It is often helpful to use actions to access or display the values of slots, or to
set up testing data etc.

The basic format of an action is as follows.

action action_name ;
do directive(s) .

Examples

action demo ;
do invoke ruleset demo_rules .

action empty_into(X, Y) ;
do Y`s contents := Y`s contents + X`s contents
and X`s contents := 0 .

action write_data(Customer) ;
do write('Customer : ') and

write(Customer`s name) and
nl and
write('ID : ') and
write(Customer`s id) and
nl .

Note that Prolog built-in predicates (such as write/1 and nl/0 above) may
be included in the directives of an action.

Any of the above actions may be executed from the Prolog command line as
queries, e.g.

?- demo .

?- empty_into(jug1, jug2).

?- write_data(cust23).

7. Knowledge Specification Language 93

flex toolkit

Relations

A relation is defined by a collection of clauses. It is a logical relationship
over entities, similar to a Prolog predicate.

Unlike actions, there may be several different ways of defining a
relationship.

A relation may be executed either from the Prolog command line, or
from within a flex action, a flex rule or another relation, or from
within a Prolog program.

The basic format of a relation is as follows.

relation relation_name
if condition(s) .

The conditions may be other relations, actions or Prolog programs. If
the conditions are not satisfied any further definitions of the relation will be
tried.

Examples

relation is_leaf(Node)
if the links_out of Node is empty.

relation yes_or_no(yes).
relation yes_or_no(no).

In the following example, the relation bank_balance retrieves the named
customer’s balance if the customer exists, otherwise it creates a new
customer and sets the customer’s balance to 0.

relation bank_balance(Customer, Balance)
if C is some customer and

Customer is C`s cname and
Balance is C`s balance.

relation bank_balance(Customer, 0)
if gensym(cust, NewCust) and
NewCust is a new customer and
NewCust`s cname becomes Customer and
NewCust`s balance becomes 0.

The fibonacci relation will generate the Nth number in the Fibonacci
sequence (where each number in the sequence is the sum of the two
preceding numbers).

7. Knowledge Specification Language 94

flex toolkit

relation fibonacci(1 , 1) .
relation fibonacci(2 , 1) .
relation fibonacci(N , Z)

if fibonacci(N-1 , X)
and fibonacci(N-2 , Y)
and Z is X + Y .

A relation can optionally be prefixed by the symbol $ to indicate that none
of its constituent parts should be dereferenced. The relation is interpreted
exactly as a Prolog clause, with each term taken literally rather than having
any flex interpretation imposed.

Example

relation $ fibonacci(N , Z)
if N1 is N-1
and N2 is N-2
and fibonacci(N1 , X)
and fibonacci(N2 , Y)
and Z is X + Y .

Note that in this example we cannot use the expressions N-1 and N-2 as
arguments (as in the previous fibonacci example), because the $ symbol
means that no dereferencing of arguments will occur.

Functions

A function is evaluated at run-time by replacing the left-hand-side of the
equality symbol with the right-hand-side. A function may contain conditional
statements which will be evaluated before the replacement takes place.

The basic formats of a function are as follows.

function function_name = expression .

function function_name = Variable
where condition(s) .

function function_name =
if condition(s)
then expression1
else expression2 .

Examples

function access_code = current_user`s access .

function father(X) = Y
where parent(Y, X)
and male(Y) .

function taxed(Amount) = T
where T is Amount * 1.17 .

function maximum(A, B) =

7. Knowledge Specification Language 95

flex toolkit

if A > B then A
else B .

function fibonacci(N) =
if N > 1
then fibonacci(N-1) + fibonacci(N-2)
else 1 .

Launches

A launch is a procedure which can be attached to frames and is
automatically invoked whenever a new instance of that frame is created. Its
primary use is in setting up the initial characteristics of frame instances.

The directives associated with a launch are executed immediately after the
instance is created.

A launch can be tailored such that it fires only under certain circumstances.

The general format of a launch is as follows.

launch launch_name
when Instance is a new Frame
and condition(s)
then directive(s) .

launch launch_name
when Instance is a new instance of Frame
and condition(s)
then directive(s) .

The conditions are optional.

Examples

This first example will simply display a message each time a new instance of
carrier is created.

launch pick_up_new_carrier_bag
when Bag is a new instance of carrier
then write('I need another carrier bag ')
and write(Bag)
and nl .

The next example executes the female_enrolment_questions
procedure each time a new instance of student is created who is female.

launch female_enrolment
when Person is a new student
and female(Person)
then female_enrolment_questions(Person) .

7. Knowledge Specification Language 96

flex toolkit

Constraints

A constraint is a validity check which can be attached to an attribute of a
frame. It is automatically invoked whenever the value for that slot changes.

The checks associated with a constraint are executed immediately before the
value of the slot is to be changed, and the value only changes if this check
succeeds. If the check fails then the slot is not updated, and the update itself
will fail.

Note that a demon may be used to perform checks after a slot value has
changed.

The general format of a constraint is as follows.

constraint constraint_name
when Attribute changes
from Expression1
to Expression2
and condition1(s)
then check that condition2(s)
otherwise directive(s) .

The from, to, the conditions1 and the otherwise are all optional.

Example

This example checks that a vessel is never filled to beyond its capacity. If
the proposed value is invalid, an error message is written (the otherwise
part of the constraint) and the slot update does not take place.

constraint maximum_contents_of_vessel
when the contents of Vessel changes to X
and Vessel is some vessel
then check that number(X)
and X =< the Vessel `s capacity
otherwise write('Illegal contents of vessel ')
and write(Vessel)
and write(' Contents ')
and write(X)
and nl .

This next example makes sure that the number of widgets in a
container never falls below zero.

constraint minimum_widgets
when the widgets of Container changes to N
and Container is some container
then check that N > 0
otherwise Container`s widgets becomes 0.

Demons

A demon is a procedure which can be attached to an attribute of a frame. It

7. Knowledge Specification Language 97

flex toolkit

is automatically invoked whenever the value for that slot changes.

The directives associated with a demon are executed immediately after the
slot value changes.

A demon can be tailored such that it fires only for given values and/or only
under certain circumstances.

Note that a constraint may be used to perform checks before a slot
value is changed.

The general format of a demon is as follows.

demon demon_name
when Attribute changes
from Expression1
to Expression2
and condition(s)
then directive(s) .

The from and to and the conditions are all optional.

Examples

The first example displays information about the contents of any jug
when its value changes.

demon spy_the_contents
when the contents of any jug changes from X to Y
then write('jug change ... ')
and write(Y - X)
and nl .

The second example checks the changes in temperature value (in any
frame), and takes necessary actions when it rises above boiling point.

demon check_for_melt_down_of_core
when the temperature changes to T
and T is above boiling_point
then remember that danger_level(red)
and shut_down .

Watchdogs

A watchdog checks the access rights to an attribute of a frame. It is
automatically invoked whenever there is a request for the current value (not
the default value) of that slot.

The checks associated with a watchdog are executed immediately before the
value is accessed. If the check fails then the access call also fails.

The general format of a watchdog is as follows.

7. Knowledge Specification Language 98

flex toolkit

watchdog watchdog_name
when Attribute is requested
and condition1(s)
then check that condition2(s)
otherwise directive(s) .

The conditions1 and the otherwise are optional.

Examples

watchdog account_security
when the contents of account is requested
and outside_office_hours
then check that the user`s classification is above

99
otherwise report_illegal_entry .

watchdog gift_security
when the surprise of the box is requested
then check that the date is 'Christmas Day' .

Data

A data entry is a series of directives which assign values to slots or modify
the facts and exceptions in the database.

Its use is in establishing the initial state of some problem, since the data
sentences will be executed at compile time, and again each time the flex
routine restart/0 is called. This initial state (i.e. as if all flex code has just
been compiled but not run) can always be retrieved by calling restart/0.

The general format of a data sentence is as follows.

data data_name
do directive(s) .

Examples

data start_up_configuration
do the contents of jugA becomes 2
and jugB`s contents becomes jugB`s capacity - 2
and remember that danger_level(yellow) .

data initialise_cinemas
do c1 is a new cinema whose film is 'Frankenstein'

and whose seats is 50 and
c2 is a new cinema whose film is 'The Third Man'

and whose seats is 75.

Do Statements

A do statement is, like data above, a series of directives which assign values

7. Knowledge Specification Language 99

flex toolkit

to slots or modify the facts / exceptions in the database.

Its use is similar to a data statement in establishing the initial state of some
problem, but, unlike data, anything executed by a do statement in this way
is not re-established by the flex routine restart/1. A do statement is for
executing directives once at compile time, and once only.

The general format of a do statement is as follows.

do directive(s) .

Examples

do the contents of jugA become 2
and jugB`s contents become jugB`s capacity - 2
and remember that danger_level(yellow) .

do c1 is a new car whose engine_size is 1100
and c1`s model := 'Whizzo'
and c1`s colour := metallic_blue .

To illustrate the difference between do and data, consider the following
example.

frame widget
default screws is 0 and
default bolts is 0.

relation get_widget(W, S, B)
if W is some widget

whose screws is S and whose bolts is B.

do w1 is a new widget
whose screws is 50 and whose bolts is 10.

data new_widgets
do w2 is a new widget

whose screws is 20 and whose bolts is 30.

We may find the current instances of widget using the query
get_widget/3. Initially after compilation, there will be two widgets, w1
and w2, as declared by the data and do statements above.

?- get_widget(W, S, B).
W = w1, S = 50, B = 10
W = w2, S = 20, B = 30

However, if we precede the query with the flex call to restart/0, which
reinitialises the flex workspace, we will see that the widget w2 is restored (as
in the data statement) but the widget w1 is not restored (because it was only
declared in a do statement).

?- restart, get_widget(W, S, B).
W = w2, S = 20, B = 30

7. Knowledge Specification Language 100

flex toolkit

Questions

A question describes the manner in which some information is to be
extracted from the user. The response is obtained either through one of
flex’s standard answer mechanisms or a customized answer.

A standard question comprises a question name, followed by some text to
be displayed, followed by the type of question and an optional explanation
indicated by the KSL keyword because.

Menu Questions

In a menu question, the user is presented with a collection of options, and is
offered the choice of making either a single selection or multiple selections.

The general formats of a menu question are as follows.

question question_name
text of question ;
choose from menu items ;
because explanation .

question question_name
text of question ;
choose some of menu items .

question question_name
text of question ;
choose one of menu items .

An explanation (the because part) is optional in each case.

The KSL keywords choose one of are for single selection menus, where
the user must select just one item; the others are for multiple selection
menus where the user can select any number of items.

The user’s response to the question is stored in a global variable called
question_name.

Examples

question choose_a_colour
Select a colour ;
choose one of red, green, yellow, blue, black,

white .

The text Select a colour will be displayed when the question is asked.
In this case the user may select just one of the items displayed, and this
selection will be stored as the current value of the global variable
choose_a_colour.

In the following example the user may select any number of the items

7. Knowledge Specification Language 101

flex toolkit

displayed.

question choose_colours
Select your colours ;
choose some of red, green, yellow, blue, black,

white.

This is exactly equivalent to:

question choose_colours
Select your colours ;
choose from red, green, yellow, blue, black, white.

Alternatively, a group name may be given for the menu items, e.g.

group colours
red, green, yellow, blue, black, white.

question choose_a_colour
Select a colour ;
choose one of colours.

To actually invoke a question, use the KSL keyword ask in a directive.

For example, the colours question given above will be invoked by the
following flex relation.

relation get_colour(C)
if ask choose_a_colour
and C is choose_a_colour .

The Prolog query

?- get_colour(C).

will display a standard menu dialog (its actual appearance will depend on the
particular implementation of flex that you are using), and the user’s choice
will be stored in the flex global variable choose_a_colour and returned
as the value of the Prolog variable C.

Note that to define get_colour/1 as an equivalent action, we would need
to use the KSL check that construct.

action get_colour(C) ;
do ask choose_a_colour
and check that C is choose_a_colour .

Explanations

The question dialog will normally contain a button labelled Explain, which
allows for explanations to be attached to questions. The user may click the
Explain button and the flex programmer may provide text to be displayed
at this point (using the KSL keyword because), as an explanation of why

7. Knowledge Specification Language 102

flex toolkit

the question is being asked, or perhaps to give some help on answering the
question.

For example:

question choose_a_colour
Select a colour ;
choose one of colours ;
because This colour will be used for text display.

Keyboard Input

Users may be asked to enter information from the keyboard using the KSL
keyword input. The type of the data expected may then be specified, as
either name, number, integer or set.

The general formats of a keyboard input question are as follows.

question question_name
text of question ;
input datatype ;
because explanation .

question question_name
text of question ;
input variable
such that condition(s) ;
because explanation .

As before, the because part is optional. The datatype may be

name
number
integer
set

Examples

question get_country
Which country do you live in? ;
input name .

question number_of_children
How many children do you have ? ;
input integer .

question room_width
What is the width of the room (in metres)? ;
input number .

question child_names
Please enter your children’s names ;
input set .

The input keyword may also be followed by some conditions which define

7. Knowledge Specification Language 103

flex toolkit

the type of the answer, using the KSL keywords such that.

The following example expects an integer greater than 18 for the age. Error
messages will be given if the input does not comply with these conditions.

question age_of_applicant
Please enter your age ;
input X such that integer(X) and X > 18 .

User Defined Questions

The flex programmer may define alternative ways of getting information
from the user. The KSL keywords

answer is ... such that

may be used to specify another routine which will provide the necessary
information. This routine may be a flex relation, a flex action or a
Prolog program, probably one which presents a customised dialog into
which the user will enter data.

The general format of a user-defined question is as follows.

question question_name
answer is Value
such that directive .

Example

question wine
answer is X such that get_wine_from_user(X) .

The get_wine_from_user/1 routine will be defined elsewhere and will
return in X the wine chosen by the user.

Groups

A group is a means of gathering several names under one collective
heading. The basic format of a group is:

group group_name
first_item, second_item, .., last_item .

A group may simply be a set of items grouped together for convenience, for
use in a question.

Example

group wall_colours
magnolia, coffee, apple_white, barley, buttermilk .

7. Knowledge Specification Language 104

flex toolkit

question wall_colour
Please choose a colour for your room ;
choose from wall_colours .

The items in a group may be the names of rules, and the group may then be
referenced in a ruleset, or it may be part of a rule network.

Example

group food_rules
ask_for_the_starter, ask_for_the_entree .

ruleset dinner
contains food_rules .

A group may also be an ordered list of items which which may then be used
for comparison purposes (using the KSL keywords according to).

Examples

group fuzzy_ordering
impossible, improbable, possible, probable,

definite.

relation less_likely(A, B)
if A is less than B

according to fuzzy_ordering.

Synonyms

A synonym can be used to make code easier to read by allowing the
replacement of frequently occurring terms or expressions with a mnemonic.
The synonym is textually replaced by its expression when the sentence in
which it occurs is being parsed.

One advantage of synonyms is improved readability; another is that when a
constant value changes it is easier to change it in the synonym declaration
than in every place it might occur in the code.

The basic format of a synonym is:

synonym name_to_replace replacement_expression .

All occurrences of name_to_replace in the KSL sentences following this
declaration will be replaced by the term replacement_expression.

Examples

synonym pi 3.14159.

At compile time all occurrences of pi will be replaced by the number
3.14159 .

7. Knowledge Specification Language 105

flex toolkit

synonym weight_calc
its volume times its density .

All occurrences of weight_calc will be replaced by the term its
volume times its density.

synonym interest_rate 8.5 .

All occurrences of interest_rate will be replaced by the number 8.5.
Here, if the interest rate changes, only one change is necessary (to the
synonym definition) before recompiling source code.

Templates

Like a synonym, a template assists the readability of KSL statements. A
template can be thought of as a parameterised synonym, allowing textual
replacements at compile-time. The ^ symbol is used to indicate an argument
position.

A template may have a positive form and an optional negative form. The
basic format of a template is:

template replacement
positive_template ;
negative_template .

At compile time, any terms of the form positive_template will be
replaced by replacement, and any terms of the form
negative_template will be replaced by not replacement, with
arguments being replaced appropriately. Often the replacement term will
be defined as a relation or an action.

For example, suppose we have the following template (which only has a
positive form).

template empty_out
empty out ^ .

Then in KSL source code the expression

empty out jug1

will be converted at compile time to

empty_out(jug1)

We may define the action empty_out/1, also making use of the template,
as follows.

action empty out X ;
do X`s contents becomes 0 .

7. Knowledge Specification Language 106

flex toolkit
6

This will be translated at compile time into:

action empty_out(X) ;
do X`s contents becomes 0 .

7. Knowledge Specification Language 107

flex toolkit
7

Examples

template on_top_of
block ^ is on top of ^ ;
block ^ is not on top of ^ .

Having defined the on_top_of template, we can then use it in KSL
statements. For example, the following statement

block p is on top of the table

will be converted at compile time to the term

on_top_of(p, table)

The statement

block q is not on top of p

will be converted at compile time to the term

not on_top_of(q, p).

The following template defines price comparisons of items. The phrase
is more expensive than is the positive template, with is cheaper
than being the negative template.

template price_greater
^ is more expensive than ^ ;
^ is cheaper than ^ .

Thus the expression X is more expensive than Y will translate at
compile time to price_greater(X, Y), and A is cheaper than
B will translate at compile time to not price_greater(A, B).

We may define the relation price_greater/2 as follows.

relation Item1 is more expensive than Item2
if the price of Item1

is greater than the price of Item2.

Note that

Item1 is more expensive than Item2

translates at compile time to

price_greater(Item1, Item2).

8. Run-Time Interpretation of KSL 108

flex toolkit

8. Run-Time Interpretation of KSL

In this chapter we discuss how a flex program is interpreted at run-time.

Representation of KSL Objects

Each and every KSL object is represented by a Prolog structure. It is these
structures which are interpreted at run-time by the flex predicates.

The following table defines the mapping from KSL objects onto Prolog
structures.

KSL Object Prolog Representation

value V V
global variable N N
nothing []
something / anything _

attribute A of frame F @(A, F)
attribute A of any frame @(A, _)
attribute A of an instance of frame F @(A, I) :

some_instance(F, I)

attribute A1 of (attribute A2 of frame F) @(A1 , @(A2, F))
(attribute A of frame F1) of frame F2 @(@(A, F1), F2)
etc.

{ E1 or … Ek } or([E1, … , Ek])
{ E1 and … Ek } [E1, … , Ek]
{ X : C } S : setof(X, C, S)

if C then E1 else E2 X : (C -> X=E1 ; X=E2)
X such that C X : C

everthing in group G L : every_instance(G,L)
every instance of frame F whose … S : setof(I ,

(some_instance(F,I), …),S)

some instance of group G X : some_instance(G,X)
some instance of frame F whose … I : (some_instance(F,I),…)
self-reference to attribute A its(A)

the answer to question Q X : answer(Q,X)

an expression with binary operator O O(El,Er)
an expression with unary operator O O(E)

F(E1, … ,Ek) F(E1, … ,Ek)

8. Run-Time Interpretation of KSL 109

flex toolkit

$ E $(E)

8. Run-Time Interpretation of KSL 110

flex toolkit

Interpretation of KSL Sentences

Under the normal Prolog interpretation of relation calls, arguments are
treated as fixed objects which can only pattern-match with each other. This
interpretation is used wherever a $ symbol appears in a KSL program.

Under the flex interpretation of relation calls, however, arguments are
dereferenced immediately before the call is made. Furthermore, KSL objects
can be dereferenced to alternative values. For example, the construct
or([E1,…,Ek]) dereferences to some Ei where 1•i•k .

This interpretation means that backtracking can take place not only over
relation calls, but also over the dereferencing mechanism itself. For example,
consider the following call to the built-in predicate member/2.

member(X, [123, or([a,b,c])]) .

Under a Prolog interpretation the possible solutions are

X = 123
X = or([a,b,c]) .

But under a flex interpretation there are 6 possible solutions :

X = 123 X = a
X = 123 X = b
X = 123 X = c

This is because the flex dereferencing mechanism generates three possible
Prolog goals from the original flex goal, namely:

member(X , [123,a]) .
member(X , [123,b]) .
member(X , [123,c]) .

Each of these yields two solutions for X.

8. Run-Time Interpretation of KSL 111

flex toolkit

Dereferencing of KSL Objects

The following table shows the method by which Prolog terms (and thus KSL objects)
are dereferenced.

Term Dereferenced Value

N Get the current value for global variable N and
dereference it

T T, whenever T is an atomic term

[E1, … ,Ek] [T1, … ,Tk] where each Ei dereferences to Ti
or([E1, … ,Ek]) Choose some Ei and dereference it to Ti
@(A,F) First of all, dereference A and F to A1 and F1,

respectively; then get the current value, the default
value or an inherited value for attribute A1 of frame
F1, and dereference it; during the subsidiary
dereferencing F1 becomes the original frame

its(A) If there is an original frame F then the dereferencing
proceeds as if it were @(A,F), otherwise the structure
its(A) is returned

X : C Execute the condition C and dereference the resulting
instance of X

O(El,Er) Dereference the operands down to Tl and Tr; if they
are both numbers then apply the operator, otherwise
return the structure O(Tl,Tr)

O(E) Dereference the operand down to T; if it is a number
then apply the operator, otherwise return the structure
O(T)

F(E1,…,Ek) Dereference each Ei to some Ti; if it is a defined
function then replace with the right-hand-side of the
definition and continue dereferencing, otherwise return
the structure F(T1,…,Tk)

$(E) E

8. Run-Time Interpretation of KSL 112

flex toolkit

Representation of KSL Sentences

In the following sections we describe how the sentences of KSL are
represented as Prolog programs. When a KSL program has been compiled
the specified predicates will exist in the Prolog database. See also the
chapter on flex Predicates for an explanation of the Prolog predicates which
are equivalent to the KSL given here.

Frames
Frames are mapped onto clauses for the relations frame/2,
default_value/3 and link/3, as follows.

frame(Frame, Parents).

default_value(Attribute, Frame, Value).

link(Attribute, Frame, InheritFrom).

In addition, for each parent frame PF a clause for PF/1 is created.

Example

frame brick is a kind of block, toy ;
default weight is its volume times its density ;
inherit volume from toy, pyramid and
do not inherit shape .

will be represented by the Prolog assertions

frame(brick, [block,toy]).
block(brick).
toy(brick).

default_value(weight, brick, its(volume) *
its(density)).
link(volume, brick, [toy,pyramid]).
link(shape, brick, []).

Instances
Instances of frames are asserted as clauses for the relations instance/2,
current_value/3 and link/3, as follows.

instance(Instance, Frame).

current_value(Attribute, Instance, Value).

link(Attribute, Instance, InheritFrom).

8. Run-Time Interpretation of KSL 113

flex toolkit

In addition, for the parent frame PF a clause for PF/1 is created.

Example

instance tweety_pie is a bird ;
habitat is a cage and
predator is sylvester ;
do not inherit motions .

will be represented by the Prolog assertions

instance(tweety_pie, bird).
bird(tweety_pie).

current_value(habitat, tweety_pie, cage).
current_value(predator, tweety_pie, sylvester).

link(motions, tweety_pie, []).

Launches
Launches are mapped onto clauses of the relation launch/5, as follows.

launch(Launch,
Instance,
Frame,
Context,
Action).

Example

launch female_enrolment
when Person is a new student
and female(Person)
then female_enrolment_questions(Person) .

will be represented by the Prolog assertion

launch(female_enrolment,
Person,
student,
female(Person),
female_enrolment_questions(Person)).

Demons
Demons are asserted as clauses for the relation demon/7, as follows.

demon(Demon,
Attribute,
Frame,
OldValue,
NewValue,

8. Run-Time Interpretation of KSL 114

flex toolkit

Context,
Action).

Example

demon check_for_melt_down_of_core
when the temperature of vessel changes to T
and T is above boiling_point
then remember that danger_level(red)
and shut_down .

will be represented by the Prolog assertion

demon(check_for_melt_down_of_core,
temperature,
vessel,
_,
T,
comparison(>,T,boiling_point),
(remember(danger_level(red)),prove(shut_down)

)
).

Constraints
Constraints are mapped onto the relation constraint/8, as follows.

constraint(Constraint,
Attribute,
Frame,
OldValue,
NewValue,
Context,
Check,
Action).

Example

constraint maximum_contents_of_jugA
when the contents of jugA changes to X
then check that number(X)
and X =< jugA`s capacity .

will be represented by the Prolog assertion

constraint(maximum_contents_of_jugA,
contents,
jugA,
_,
X,
true,
(prove(number(X)),

comparison(=<,X,@(capacity,jugA))
),
fail

).

8. Run-Time Interpretation of KSL 115

flex toolkit

Watchdogs
Watchdogs are mapped onto clauses of the relation watchdog/6, as
follows.

watchdog(Watchdog,
Attribute,
Frame,
Context,
Check,
Action).

Example

watchdog security_check
when the contents of account are requested
then check user`s classification is above 7.

will be represented by the Prolog assertion

watchdog(security_check,
contents,
account,
true,
comparison(>, @(classification,user), 7)

fail).

Production Rules
Rules are mapped onto instances of the relation rule/5, as follows.

rule(Rule,
Conditions,
Action,
Explanation,
Score).

Example

rule prescribe_lomotil
if the patient complains of diarrhoea and
the patient does not suffer from liver_disorder

and the patient is not pregnant
then I advise the patient to take lomotil
browse file medical7 .

will be represented by the Prolog assertion

rule(prescribe_lomotil,
(prove(complains(patient,diarrhoea)),

disprove(suffers(patient,liver_complaints)),
disprove(pregnant(patient))),
take(patient,lomotil),
browse(medical7),

8. Run-Time Interpretation of KSL 116

flex toolkit
6

0).

Actions
Actions are represented directly by the corresponding Prolog clause. In
addition, the name of the action is remembered as a clause of
relation/2.

Example

action empty_into(X, Y) ;
do Y`s contents := Y`s contents + X`s contents
and X`s contents := 0 .

will be represented by the Prolog clauses

relation(empty_into, 2) .

empty_into(X, Y) :-
new_value(@(contents,Y), @(contents,Y) +

@(contents,X)),
new_value(@(contents,X), 0) .

Relations
Relations are represented directly by the corresponding Prolog clause. In
addition, the name of the relation is remembered as the relation
relation/2.

Example

relation sister(X, Y)
if father(X) = father(Y)
and not male(Y)
and X is not equal to Y .

will be represented by the Prolog clauses

relation(sister,2) .

sister(X,Y) :-
equality(father(X),father(Y)),
not male(Y),
not equality(X,Y) .

Functions
Functions are represented by instances of the relation function/3, as
follows.

function(Function, Arguments,Value).

8. Run-Time Interpretation of KSL 117

flex toolkit
7

Example

function father(X) = Y
where parent(X, Y)
and male(Y) .

will be represented by the Prolog assertion

function(father,
[X],
(Y : parent(X,Y), male(Y))).

Data
Data is mapped onto clauses of the relation data/2, as follows.

data(Data, Action).

 In addition, the directives of the data statement are immediately executed.

Example

data start_up_configuration
the contents of jugA are 2 and
the contents of jugB are the capacity of jugB - 2
and remember that danger_level(yellow) .

will be represented by the Prolog assertion

data(start_up_configuration,
(new_slot(contents,jugA,2),

new_slot(contents,jugB,@(capacity,jugB-2)),
remember(danger_level(yellow)))).

Do Statements
Do statements are not stored, but are executed directly.

Questions
Questions are stored as clauses of the relation question/4, as follows.

question(Question,
Text,
Answer,
Explanation).

Example

question starter
Please choose a starter for your meal ;
choose from pate, soup, melon ;

8. Run-Time Interpretation of KSL 118

flex toolkit

because The starter is part of a meal .

will be represented by the Prolog assertion

question(starter,
['Please',choose,a,starter,for,your,meal],

single([pate,soup,melon]),
text(['The',starter,is,part,of,a,meal])).

Groups
Groups are mapped onto the relation group/2, as follows.

group(Group, Elements).

Example

group colours
black, blue, green, cyan, red, magenta, yellow,

white .

will be represented by the Prolog assertion

group(colours,
[black,blue,green,cyan,red,magenta,yellow,white]).

Synonyms
Synonyms are mapped onto the relation synonym/2, as follows.

synonym(Synonym, Term).

Example

synonym weight_calc
its volume times its density .

will be represented by the Prolog assertion

synonym(weight_calc, its(volume)*its(density)).

Templates
Templates are stored as clauses of the relation template/3, as follows.

template(Template, PositiveForm, NegativeForm).

 Each form of the template is stored as a list of lists which indicate the
parameter positions.

Example

template ontopof

8. Run-Time Interpretation of KSL 119

flex toolkit

block ^ is on top of ^ ;
block ^ is not on top of ^ .

will be represented by the Prolog assertion

template(ontopof,
[[block],[is,on,top,of],[]],
[[block],[is,not,on,top,of],[]]).

9. Flex Predicates 120

flex toolkit

9. flex Toolkit Predicates

This chapter describes the Prolog predicates provided by the flex toolkit.
These are provided for accessing the functionality of flex from Prolog rather
than using the KSL, or you may choose to write some of your application in
Prolog using these predicates rather than their KSL equivalents. For some
operations, such as list processing, it is sometimes easier and more efficient
to use the Prolog flex predicates in a Prolog program rather than using KSL
constructs. You may freely intermix code written using the flex Prolog
predicates and code written using the KSL: frames, actions and relations
may be accessed from Prolog just as Prolog programs may be accessed from
the KSL.

The predicates are listed here in alphabetical order; the flex predicate index
at the back of this document references the predicates by category.

9. Flex Predicates 121

flex toolkit

add_value(+Slot,+Term)

add_value/2 can either be used to augment lists or to increment numbers.

The given Term is first dereferenced down to some Value.

The Slot should either be a compound term of the form
@(Attribute,Frame) or it is the name of a global variable, in which case
the name of the frame to be used is global.

If there is an existing slot then it is augmented with Value. Otherwise, a
new slot is created.

Example

add_value(@(colour,flag), [red,blue,cyan,white]).

all_rules(-Names)

Find the names of all rules in the workspace.

Example

?- all_rules(N).
N = [prescribe_lomotil,fill_B_from_A]

ancestor(+Frame,-Ancestor)

Ancestor is an ancestor of Frame in the hierarchy, i.e. Ancestor is the
Frame itself, or a parent frame, or a grandparent frame, or a great-
grandparent frame, etc.

Example

?- ancestor(moby_dick, A).
A = moby_dick
A = whale
A = mammal
A = animal
A = ocean_dweller

answer(+Name,-Value)

Retrieve the answer given to the question Name. If the question has not yet
been asked, then the call to answer/2 will automatically invoke the
corresponding call to ask/1 to ask the question and obtain an answer.

Examples

?- answer(starter, X).
X = soup

9. Flex Predicates 122

flex toolkit

ask(+Name)

Ask the question Name and record the answer given as a new value for the
global variable Name (see new_value/2). The answer can then be accessed
either through the dereferencing mechanism (dereference/2) or directly
through answer/2 or isa_value/2.

Examples

ask(starter).
ask(dessert).

atn(+Name,+Names,-Newnames)

This is a built-in program for re-organising the rule agenda after each cycle
of the forward chaining engine according to a rule transition network. It is
defined as follows.

atn(Name, _, Newnames) :-
isa_group(Name, NewNames).

atn(Name, _, []).

back(+Name,+Names,-Newnames)

This is a built-in program for re-organising the rule agenda after each cycle
of the forward chaining engine. It puts the rule Name to the back of the rule
agenda. It is defined by the program:

back(Name, Names, Newnames) :-
once(Name, Names, Remainder),
append(Remainder, [Name], Newnames).

comparison(?Relation,+Term1,+Term2)

The two terms are dereferenced (toValue1 and Value2) and the values
compared. The ordering relation is the built-in typographical ordering of
Prolog terms.

If Value1 is greater than Value2 then the Relation is either > or >=.

If Value1 is less than Value2 then the Relation is either < or =<.

Otherwise, if the two values are the same then the Relation is either =,
>= or =<.

Examples

?- comparison(=<, temperature, freezing_point).
no

?- comparison(X, @(contents,jugB), @(capacity,jugB)).
X = '<'

9. Flex Predicates 123

flex toolkit

comparison(?Relation,+Term1,+Term2,+Group)

comparison/4 behaves as comparison/3 except that the supplied
Group name is used as the ordering relation. The two terms are
dereferenced and the resulting values (Value1 and Value2) compared
according to their relative positions in the Group elements.

If Value1 is after Value2 in the Group then the Relation is either > or
>=.

If Value1 is before Value2 in the Group then the Relation is either <
or =<.

Otherwise, if the two values are the same then the Relation is either =,
>= or =<.

Examples

?- comparison(X, blue, Y, colours) .
X = '<', Y = black
X = '=', Y = blue
X = '>', Y = green etc.

crss(+Names,-Name,-Action)

This is a built-in program for selecting a rule to fire during each cycle of the
forward chaining engine. It is the conflict resolution scoring system
algorithm, and is defined by the following program.

crss(Names, Name, Action) :-
find_the_best(Names, no_bsf, bsf(Name,_,Action)).

find_the_best([], Best, Best).
find_the_best([Name|Names], Best1, Best3) :-

best_so_far(Name, Best1, Best2),
find_the_best(Names, Best2, Best3).

best_so_far(Name, BSF, bsf(Name,Value,Action)) :-
not isa_disabled_rule(Name),
isa_rule(Name, Conditions, Action, _, Score),
Conditions,
dereference(Score, Value),
(BSF=bsf(_,Previous,_) -> Previous < Value ; true

),
!.

best_so_far(_, BSF, BSF).

crss(+Names,-Name,-Action,+Threshold)

This is a variation of the conflict-resolution algorithm to incorporate
threshold values. The selection stops as soon as a satisfied rule attains the

9. Flex Predicates 124

flex toolkit

threshold value.

crss(+Names,-Name,+FiringMechanism,-If,-Then,-Vars)

FiringMechanism is one of {repeat,first,last,all} using first will give the same
behaviour as crss/3 .

crss(+Names,-Name,+FiringMechanism,-If,-Then,-Vars,+Threshold)

Threshold is a value for chosing the rule or rules with the best score.

cycle(+Name,+Names,-Newnames)

This is a built-in program for re-organising the rule agenda after each cycle
of the forward chaining engine according to cyclic rotation. It is defined by
the program:

cycle(Name, Names, Newnames) :-
append(Front, [Name|OldBack], Names),
append(Front, [Name], NewBack),
append(OldBack, NewBack, Newnames).

dereference(+Term,-Value)

This is the kernel of the flex run-time procedures. It is used throughout the
system as a means of interpreting flex objects. See the earlier chapter
'Interpretation of KSL', for a complete description of the dereferencing
mechanism.

descendant(+Frame,-Descendant)

Descendant is a descendant of Frame in the hierarchy. That is,
Descendant is the Frame itself, or a child frame, or a grandchild frame, or
a great-grandchild frame, etc.

Example

?- descendant(animal, D).
D = animal
D = mammal
D = whale
D = moby_dick

disable_rules(+Names)

All the rules in the list Names are disabled, and will not be considered for
firing. It is as if they have been temporarily removed from the workspace.

Example

disable_rules([prescribe_lomotil,fill_B_from_A]) .

9. Flex Predicates 125

flex toolkit

disprove(+Goal)

Dereference each of the arguments of the Goal and then try to disprove it.

If there is a Prolog program for the Goal, then that program is run together
with negation-as-failure. Otherwise, the workspace is searched for a
matching exception (see new_exception/1), or a check is made that
there are no matching facts (see new_fact/1).

Example

?- disprove(X=or([a,b,c])).
no

?- disprove(likes(X, Y)).
X = mary, Y = fred

enable_rules

Re-enable all rules which have previously been disabled.

enable_rules(+Names)

Re-enable all of the rules in Names which may have been previously disabled
(see disable_rules/1). They can now be considered as potential rules to
fire.

Example

enable_rules([fill_B_from_A])

equality(+Term1,+Term2)

The two terms are dereferenced and the resulting terms equated. If the
equate fails (or there is backtracking into equality/2) then alternative
dereferenced values will be equated.

Example

?- equality(pressure, high).
no

?- equality(temperature, 2*50).
yes

?- equality(X, or([a,b,c])).
X = a
X = b
X = c

9. Flex Predicates 126

flex toolkit
6

every_instance(+Name,-Elements)

Retrieve (or check) all Elements which are instances of Name. Name can be
the name of a group, the name of a frame or an instance or the name of a
unary relation.

Examples

?- every_instance(fuzzy_ordering, E).
E = [impossible,improbable,possible,probable,definite])

?- every_instance(whale, E).
E = [moby_dick]

explain(+Rules)

Initiate a dialog which allows each rule in the listRules to be explained. The
explanation depends upon the rule's explanation parameter as set by
new_rule/5.

Example

explain([fill_B_from_A, empty_A, empty_B_into_A])

fcfs(+Names,-Name,-Action)

This is a built-in program for selecting a rule to fire during each cycle of the
forward chaining engine. It is the first come first served selection algorithm,
defined as follows:

fcfs(Names, Name, Action) :-
member(Name, Names),
not isa_disabled_rule(Name),
isa_rule(Name, Conditions, Action, _, _),
Conditions.

fcfs(+Names, -Name, +FiringMechanism, -If, -Then, -Vars)

FiringMechanism is one of {repeat,first,last,all} using first will give the same
behaviour as crss/3.

fire_rule(+Name)

Unconditionally execute the action part associated with the rule Name. The
rule is fired regardless of whether Name is enabled or whether its conditions
are satisfied.

Example

fire_rule(prescribe_lomotil) .

9. Flex Predicates 127

flex toolkit
7

fixed(+Name,+Names,-Newnames)

This is a built-in program for processing the rule agenda after each cycle of
the forward chaining engine. It leaves the rule agenda unchanged, and is
defined by the program:

fixed(_, Names, Names) .

flatten_group(+Name,-Elements)

Groups, like frames and instances, can be built up into group hierarchies or
networks. This occurs when the member elements of a group are themselves
names of other groups.

The flatten_group/2 predicate is used to flatten such a group hierarchy
or network into the constituent member elements.

flex_name(?Name)

Retrieve (or test) the Name of a flex predicate.

Example

?- flex_name(N).
N = new_frame
N = isa_frame
etc.

forget_exception(+Term)

Remove the given Term, if it exists, from the exceptions in the workspace.

If subsequent backtracking happens, then the retracted exception will be re-
asserted.

Example

forget_exception(likes(X,mary)).

forget_fact(+Term)

Remove the given Term, if it exists, from the facts in the workspace.

If subsequent backtracking happens, then the retracted fact will be re-
asserted.

Example

forget_fact(male(fred)) .

9. Flex Predicates 128

flex toolkit

forward_chain(+Selection,+Misfire,+Termination,+Update,+Agenda)

Initiate a forward chaining session with the given selection algorithm and
rule agenda.

Selection is the name of the algorithm for selecting rules during each
cycle of the forward chaining engine. There are three built-in algorithms:

fcfs First come first served.
crss Conflict resolution scoring system.
crss(T) Conflict resolution with a threshold value.

In addition, a user-defined algorithm can be nominated. For example,
my_selector/3 randomly selects a rule from the agenda.

my_selector(Agenda, Rule, Action) :-
length(Agenda, N),
Posn is irand(N) + 1,
mem(Agenda, [Posn], Rule),
isa_rule(Rule, _, Action, _, _) .

If the Selection algorithm fails then the call to forward_chain/5 will
terminate.

Misfire is the name of a program which is executed whenever the action
associated with the selected rule fails.

There are three built-in misfire programs :

true Ignore misfires.
fail The original call to forward_chain/5 will also fail.
misfire Report the misfire and abort the process.

In addition, the name of a user-defined program can be nominated, such as
the following mf/1.

mf(Name) :-
write('Rule has misfired ' - Name), nl.

Termination is a Prolog call which is tested during each and every cycle
of the forward chaining engine. As soon as the Termination criterion
succeeds the call to forward_chain/5 will terminate.

In particular, if Termination is the atom fail, then the call to
forward_chain/5 will only terminate when a situation arises in which no
rules can be selected.

Agenda and Update together specify the rule agenda, and how it changes
after each cycle of the forward chaining engine.

9. Flex Predicates 129

flex toolkit

The Agenda specifies the initial agenda, and may be one of the following:

• the atom all, to signify all the rules in the workspace.

• the name of a group whose elements are rule names, or names of sub-
groups.

• the name of a rule.

• a list in which each member is one of the above.

Update is the name of a program for changing the agenda, and is one of
the following:

fixed Do not change the rule agenda at all.
once Fire each rule in the agenda at most once. This is

accomplished by removing the rule name from the agenda
after it is fired.

front Bring the rule which has just been fired to the front of the
agenda. This makes it even more likely to be fired in the next
cycle.

back Send the rule which has just been fired to the back of the
agenda. This makes it less likely to be fired in the next cycle.

cycle View the agenda as a cyclic queue. This is accomplished by
starting the selection phase immediately after the rule which
has just been fired.

possibles Remove from the agenda those rules which were rejected as
candidates (i.e. their IF parts were not satisfied) in the selection
phase.

atn Completely replace the agenda with a new agenda, depending
upon the name of the rule (also a group name) which was
fired. Use this when the rules are connected into a network
through new_group/2. The selection of rules at each stage
will determine the route taken through the network.

In addition, the name of a user-defined program can be nominated, such as
the following organise/3. This allows the user to select which rules to
retain in the next cycle of the forward-chaining engine.

organise(Rule, Rules, Newrules) :-
some_random_permutation([Rule|Rules], Newrules) .

9. Flex Predicates 130

flex toolkit

Examples

forward_chain(fcfs,
true,
prescription_made,
fixed,
prescription_rule_group) .

forward_chain(crss,
misfire,
fail,
once,
all) .

forward_chain(+Selection,+Misfire,+Termination,+Update,+Agenda,-Sequence)

forward_chain/6 behaves exactly as forward_chain/5, except that
an additional piece of information is returned: Sequence is the list of rule
names which were actually fired during the forward chaining session.

forward_chain(+Selection,+Misfire,+Termn,+Update,+Agenda,-Sequence,-Result)

forward_chain/7 behaves exactly as forward_chain/6, except that
an additional piece of information, the Result, is returned.

There are two situations in which the forward chaining can terminate, and
the Result parameter reflects this.

0 The Termination criterion was eventually satisfied.

1 A situation was reached in which no rules could be selected.

front(+Name,+Names,-Newnames)

This is a built-in program for re-organising the rule agenda after each cycle
of the forward chaining engine. It brings the most recently fired rule to the
front of the agenda, and is defined by the program:

front(Name, Names, [Name|Newnames]) :-
once(Name, Names, Newnames).

inclusion(+List,+Term)

The Term and all of the members of the List are first of all dereferenced.

If Term is itself a list, then a check is made that all of its members are also
members of the dereferenced List. Otherwise, the dereferenced Term is a
member of the dereferenced List.

Examples

?- inclusion([a,b,c,d,e], [c,e,c]).

9. Flex Predicates 131

flex toolkit

yes

?- inclusion([a,b,c,d], [c,e,c]).
no

?- inclusion([a,b,c], X).
X = a
X = b
X = c

inherit(+Attribute,+Frame,-Value)

This procedure will search the frame hierarchy starting at the parents of
Frame. The search will terminate when an ancestor of Frame can be found
which has a current or default Value for the Attribute.

inherit/3 is the inheritance part of the lookup/3 procedure.

Examples

?- inherit(habitat, moby_dick, V).
V = ocean

?- inherit(predator, moby_dick, V).
no

inherit(+Attribute,+Frame,-Value,-Ancestor)

The inherit/4 procedure behaves as the inherit/3 procedure except
that an additional piece of information, Ancestor, is returned. This
indicates where exactly in the frame hierarchy the Value came from.

Example

?- inherit(habitat, moby_dick, V, A).
V = ocean, A = moby_dick

inheritance

Return to the default inheritance settings of

Search = depth_first
Root = root_last
Plurality = singular
Effort = 9

 (See inheritance/4 below for a description of these parameters).

inheritance(?Search,?Root,?Plurality,?Effort)

The inheritance/4 procedure allows for the inspection and/or alteration
of certain characteristics of the inheritance algorithm. These characteristics

9. Flex Predicates 132

flex toolkit

are :

Search The method by which the frame hierarchy is searched.

Root Whether to visit the root frame before or after any ancestor
frames.

Plurality Whether the inheritance can provide unique or alternative
values.

Effort How much effort should be used when searching the frame
hierarchy.

The Search parameter is one of the following atoms:

depth_first A depth-first search explores each branch of the frame
hierarchy before considering other branches (the default
search strategy).

breadth_first A breadth-first search visits all ancestors at a given level
before moving upwards to the next level. That is, all parents
before any grandparents, all grandparents before any great-
grandparents, etc.

The Root parameter is one of the following atoms:

root_last A root-last search will visit ancestor frames before the special
root frame. This is the default search tactic.

root_firstA root-first search visits the root frame before any ancestor
frames.

The Plurality parameter is one of the following atoms:

singular Singular inheritance corresponds to finding the first, and only
the first solution when searching the frame hierarchy for the
value of an attribute. This is the default inheritance mode.

multiple Multiple inheritance corresponds to finding alternative values
for an attribute, enumerated in the normal Prolog fashion by
backtracking.

The Effort parameter is any non-negative integer (default is 9). It indicates
how deep the search of the frame hierarchy should go before giving up.
Special cases are 0 (no inheritance at all) and 1 (only parent frames are to be
considered).

Examples

?- inheritance(S, R, P, E).
S = depth_first, R = root_last, P = singular, E = 9

9. Flex Predicates 133

flex toolkit

?- inheritance(breadth_first, _, multiple, 2).

?- inheritance(S, root_first, P, 0).
S = breadth_first, P = multiple

initialise

Clear the workspace completely of all frames, rules, questions, etc.

isa_constraint(?Name,?Attribute,?Frame,-Old,-New,-Context,-Check,-Action)

Retrieve the characteristics of a constraint. (See new_constraint/8 for a
description of the arguments.)

Example

?- isa_constraint(N, A, F, OV, NV, CX, CK, AT) .
N = maximum
A = contents
CX = true
CK = (number(NV), comparison(=<,NV,@(capacity,F)))
AT = (write([contents,F,:=,NV]), nl)

isa_data(?Name,-Action)

Retrieve the Name and Action associated with a data directive.

Example

?- isa_data(N, A).
N = start_up_configuration
A = (new_slot(contents,jugA,2),

new_slot(contents,jugB,@(capacity,jugB)-2),
remember_fact(danger_level(yellow)))

isa_default(?Attribute,?Frame,-Value)

Test for a default value for the attribute of a frame.

A call to isa_default/3 will backtrack through all known default values
and unify Attribute with the name of the attribute, Frame with its frame
and bind Value to the default value of the attribute.

The call fails if there are no default values currently defined.

Example

?- isa_default(A, F, V).
A = habitat, F = ocean_dweller, V = ocean
A = habitat, F = mammal, V = land
etc.

9. Flex Predicates 134

flex toolkit

isa_demon(?Name,?Attribute,?Frame,-Old,-New,-Context,-Action)

Retrieve the characteristics of a demon. (See the new_demon/7 predicate
for a description of the arguments.)

Examples

?- isa_demon(N, A, F, OV, NV, CX, AT) .
N = kettle_boiling,
A = temp
F = kettle
CX = comparison(>, NV, 100)
AT = (prove(make_steam), prove(nl), prove(whistle))

isa_disabled_rule(?Name)

Retrieve (or test) the Name of a rule which is currently disabled. (See the
disable_rules/1 predicate).

Example

?- isa_disabled_rule(N).
N = prescribe_lomotil

isa_exception(?Term)

Retrieve a known exception from the workspace.

Example

?- isa_exception(F).
F = likes(mary,fred)

isa_fact(?Term)

Retrieve a known fact from the workspace.

Example

?- isa_fact(F).
F = danger_level(red)

isa_frame(?Name,?Parents)

Test for the existence of a frame and its parents.

A call to isa_frame/2 will backtrack through all known frames and unify
Name with the name of a frame and Parents with a list of the frame's
parents.

The call fails if there are no frames currently defined.

9. Flex Predicates 135

flex toolkit

Example

?- isa_frame(N, P).
N = animal, P = []
N = mammal, P = [animal]
N = whale, P = [mammal,ocean_dweller]

?- isa_frame(mammal, [P1|Rest]).
P1 = animal, Rest = []

isa_function(?Name, ?Arguments, ?Value)

Retrieve the definition of a function. (See the new_function/3 predicate
for a description of the arguments.)

Example

?- isa_function(N, A, V).
N = father, A = [X], V = (Y : (parent(X,Y),male(Y)))

isa_group(?Name,-Elements)

Retrieve the Name and Elements of a group.

Example

?- isa_group(N, E) .
N = colours
E = [black,blue,green,cyan,red,magenta,yellow,white])

N = rules1
E = [ask_for_the_starter,ask_for_the_entree])

isa_instance(?Instance,?Frame)

Test for the existence of an instance of a frame.

A call to isa_instance/2 will backtrack through all known instances and
unify Instance with the name of an instance and Frame with the
corresponding frame.

The call fails if there are no instances currently defined.

Example

?- isa_instance(I, F).
I = moby_dick, F = whale

isa_launch(?Name,?Instance,?Frame,-Context,-Action)

Retrieve the characteristics of a launch. (See the new_launch/5 predicate
for a description of the arguments.)

9. Flex Predicates 136

flex toolkit
6

Example

?- isa_launch(N, I, F, CX, AT) .
N = new_female_employee
F = employee
CX = female(N)
AT = data_for_female_employee(N)

isa_link(?Attribute,?Frame,-Parents)

Test for an inheritance link for the attribute of a frame.

A call to isa_link/3 will backtrack through all known inheritance links
and unify Attribute with the name of the attribute, Frame with its frame
and Parents with a list of the frames from which the attribute should be
inherited.

The call fails if there are no links currently defined.

Example

?- isa_link(A, F, P) .
A = habitat, F = whale, P = [ocean_dweller]
A = colour, F =moby_dick, P = [albino]
A = tail, F = manx, P = []

isa_logic(?Logic)

Retrieve or check whether a Logic is in force.

Example

?- isa_logic(X).
X = inherit

isa_question(?Name,-Question,-Answer,-Explanation)

Retrieve a question from the workspace (see the new_question/4
predicate for a description of the arguments).

Example

?- isa_question(N, Q, A, E).
N = name_of_applicant
Q = ['Please',enter,your,full,name]
A = input(name)
E = text(['No',name,means,no,benefit,!])

N = starter
Q = ['Please',choose,a,starter,for,your,meal]
A = single([pate,soup,melon])
E = none

N = dessert

9. Flex Predicates 137

flex toolkit
7

Q = ['Please',choose,a,dessert,for,your,meal]
A = multiple(dessert)
E = file(the_complete_irish_cook)

isa_relation(?Name, ?Arity)

Retrieve or check the Name and Arity of a defined relation.

Example

?- isa_relation(N, A).
N = parent
A = 2

isa_rule(?Name,-Conditions,-Action,-Explanation,-Score)

Retrieve the characteristics of a rule from the workspace. (See the predicate
new_rule/5 for a description of the arguments.)

Example

?- isa_rule(prescribe_lomotil, C, A, E, S).
C = (prove(complains(patient,diarrhoea)),

disprove(suffers(patient,liver_complaints)),
disprove(pregnant(patient)))

A = prescribe(patient,lomotil)
E = file(medical7)
S = 0

isa_slot(?Attribute,?Frame,-Value)

Test for the current value for the attribute of a frame.

A call to isa_slot/3 will backtrack through all known current values and
unify Attribute with the name of the attribute, Frame with its frame and
bind Value to the current value of the attribute. Before the access is
allowed any watchdog procedures (see watchdog/6) are first checked.

The call fails if there are no current values defined.

Example

?- isa_slot(A, F, V).
A = habitat, F = moby_dick, V = [atlantic,arctic]
A = predator, F = moby_dick, V = jonah
A = food, F = moby_dick, V = fish

?- isa_slot(food, moby_dick, V).
V = fish

isa_synonym(?Name,-Term)

9. Flex Predicates 138

flex toolkit

Retrieve the Name used as a synonym for the Term.

Example

?- isa_synonym(N, T).
N = boiling_point, T = 100
N = weight, T = its(volume)*its(density)

isa_template(?Name,-Positive,-Negative)

Retrieve both the Positive and Negative forms of a template. The
template forms will be returned as a list of lists, with breaks at the parameter
positions.

Example

?- isa_template(ontopof, P, N).
P = [[block],[is,on,top,of,block],[]]
N = [[block],[is,not,on,top,of,block],[]]

P = [[block],[is,on,top,of,table],[]]
N = [[block],[is,not,on,top,of,table],[]]

isa_value(?Slot,-Value)

Retrieve either the current Value, or in its absence the default Value, for
the Slot.

The Slot should either be a compound term of the form
@(Attribute,Frame) or it is the name of a global variable, in which case
the name of the frame to be used is global.

Examples

?- isa_value(@(colour,flag), X).
X = [red,blue,white]

?- isa_value(temperature, X).
X = 100

isa_watchdog(?Name,?Attribute,?Frame,-Context,-Check,-Action)

Retrieve the characteristics of a watchdog procedure. (See the predicate
new_watchdog/6 for a description of the arguments.)

Example

?- isa_watchdog(N, A, F, CX, CK, AT) .
N = security
A = balance
F = account
CX = outside_office_hours
CK = comparison(>,@(classification,user),99)

9. Flex Predicates 139

flex toolkit

AT = fail

is_known(+Slot)

The call succeeds only if there exists a current or default value for the Slot.

The Slot should either be a compound term of the form
@(Attribute,Frame) or it is the name of a global variable, in which case
the name of the frame to be used is global.

lookup(+Attribute,+Frame,-Value)

Retrieve the current Value for an Attribute of a Frame as in
isa_slot/3. Only if there is no current value will the default Value be
returned instead (as in isa_default/3).

If there is neither a current nor a default Value for the Attribute of the
Frame, then the frame hierarchy is searched. The search finishes whenever
an ancestor frame can be found which does have either a current or a
default Value.

The lookup/3 procedure is used whenever dereferencing flex objects.

Examples

?- lookup(colour, moby_dick, V).
V = white

?- lookup(habitat, moby_dick, V).
V = [atlantic,arctic]

?- lookup(habitat, whale, V).
V = land

lookup(+Attribute,+Frame,-Value,-Ancestor)

The lookup/4 procedure behaves as lookup/3 except that an additional
piece of information, Ancestor, is returned. This indicates where exactly in
the frame hierarchy the Value came from.

Examples

?- lookup(colour, moby_dick, V, A).
V = white, A = albino

?- lookup(habitat, moby_dick, V, A).
V = [atlantic,arctic], A = moby_dick

?- lookup(habitat, whale, V, A).
V = land, A = ocean_dweller

misfire(+Name)

9. Flex Predicates 140

flex toolkit

This is a built-in program for handling misfires during a forward chaining
session. The Name argument is the name of the rule that has misfired.
misfire/1 calls the built-in flex error-handler.

new_constraint(+Name,?Attr,?Frame,?Old,?New,+Context,+Check,+Action)

Create (or update if the Name already exists) a constraint which validates slot
updates (see new_slot/3).

The Check (a Prolog call) is performed whenever the Attribute of the
Frame changes from some Old value (this will be the atom unknown if
there is no current value) to some New value. In addition, the Context (a
Prolog call) needs to hold before the constraint is applicable.

The Check (a Prolog call) occurs immediately before the update. Indeed, the
update will only be allowed if the Check succeeds. If the Check fails, then
the Action (a Prolog call) is initiated and the update (a call to
new_slot/3) will fail.

Example

new_constraint(maximum, contents, F, _, N,
true,
(number(N),

comparison(=<,N,@(capacity,F))),
write([contents,F,:=,N])) .

new_data(+Name,+Action)

Add (or replace if the Name already exists) a new data Action to the
workspace. The Action is automatically invoked whenever there is a call to
run_data/0, run_data/1 or restart/0, and is generally used to
initiate some slot values.

Example

new_data(start_up_configuration,
(new_slot(contents,jugA,2),
new_slot(contents,jugB,@(capacity,jugB)-2),
remember_fact(danger_level(yellow)))) .

new_default(+Attribute,+Frame,+Value)

Create (or replace) a default Value for a particular Attribute of a
Frame. The default Value is used in the absence of any current value (see
new_slot/3) whenever the Attribute of the Frame is accessed.

Examples

new_default(habitat, ocean_dweller, ocean).

new_default(colour, whale, grey).

9. Flex Predicates 141

flex toolkit

new_default(colour, albino, white).

new_demon(+Name,?Attribute,?Frame,?Old,?New,+Context,+Action)

Create (or update if the Name already exists) a demon which reacts to slot
updates (see new_slot/3).

The Action (a Prolog call) is initiated whenever the Attribute of the
Frame changes from some Old value (the atom unknown if there is no
current value) to some New value.

In addition, the Context (a Prolog call) must also hold before the demon
can be activated.

The Action (a Prolog call) occurs immediately after the update, and will
therefore not affect the update itself.

Examples

new_demon(spying_slots, Attribute, Frame,
Old, New, true,
(write(Attribute(Frame) = (Old-->New)), nl)

)

new_demon(check_meltdown, global, temperature, _, T,
comparison(>,T,boiling_point),

(remember_fact(danger_level(red)), shut_down
))

new_frame(+Name,+Parents)

A new frame called Name is created whose position in the frame hierarchy is
determined by its list of Parents. These Parents determine from where
values can be inherited.

Examples

new_frame(animal, []) .

new_frame(mammal, [animal]) .

new_frame(whale, [mammal,ocean_dweller]) .

new_function(+Name, +Arguments, +Value)

Record the definition of a function Name. Functions are evaluated at run-
time through calls to dereference/2.

Example

new_function(father, [X], (Y : (parent(X,Y),male(Y)))
) .

9. Flex Predicates 142

flex toolkit

new_group(+Name,+Elements)

Create (or replace if the Name already exists) a new group containing the
given Elements. A group is used in two distinct ways. Firstly, it constitutes
a type declaration whereby each element is considered to be of type Name
(see some_instance/2). And secondly, it is used as an ordering relation
when comparing the relative values of two elements (see comparison/4).

Examples

new_group(rules1,
[ask_for_the_starter,ask_for_the_entree]) .

new_group(fuzzy_ordering,
[impossible,improbable,possible,probable,definite])

new_instance(+Instance,+Frame)

Create a new Instance of a specific Frame. All attributes of the Frame
are implicitly inherited by the Instance, unless local slots are created to
override the inheritance. Following the creation, any launch procedures
associated with the frame (see new_launch/5) are activated.

Example

new_instance(moby_dick, whale).

new_launch(+Name,?Instance,?Frame,+Context,+Action)

Create (or update if the Name already exists) a launch which reacts to the
creation of new instances of frames (see new_instance/2).

The Action (a Prolog call) is initiated whenever an Instance of the
Frame is created.

In addition, the Context (a Prolog call) must also hold before the launch
can be activated.

Example

new_launch(new_female_employee,
Name,
employee,
female(Name),
data_for_female_employee(Name)) .

new_link(+Attribute,+Frame,+Parents)

Establish an inheritance link between a Frame (and instances of that frame)
and a list of Parents, for a particular Attribute. This will override the

9. Flex Predicates 143

flex toolkit

default inheritance link established by the original creation of the Frame
(using new_frame/2 or new_instance/2).

A special case is when the list of Parents is empty. This indicates that the
Attribute should not be inherited at all.

Examples

new_link(habitat, whale, [ocean_dweller]) .

new_link(colour, moby_dick, [albino]) .

new_link(tail, manx, []) .

new_logic(+Logic)

Change the underlying logic of the system to be Logic. The only
recognised logic at present is inherit.

Example

new_logic(inherit) .

new_question(+Name,+Question,+Answer,+Explanation)

Add (or replace if the Name already exists) a new question to the workspace.

Question is a list of words to be displayed whenever the question is asked
(see ask/1 or answer/2).

The Answer indicates how an answer is to be obtained. It is one of the
following:

input Set up a dialog with an edit field into which the user can type
words and numbers.

input(T) Set up a dialog with an edit field into which the user can type
information. The expected type of the input is determined by
T, which is one of set, name, number, integer
or (X : conditions)

single(M) Set up a dialog with a menu M from which the user can make
a single selection.

multiple(M) Set up a dialog with a menu M from which the user can
make multiple selections.

Term : Goal Execute the Goal and return the Term as the answer to
the question.

The Explanation parameter is used whenever there is a request to
explain the question. This can be invoked from within a standard dialog. It is

9. Flex Predicates 144

flex toolkit

one of the following:

text(M) Display the canned text given by the list of words M.

file(F) Browse through the file F starting at the topic Name.

none There is no explanation available for the question.

Examples

new_question(name_of_applicant,
['Please',enter,your,full,name],
input(name),
text(['No',name,means,no,benefit,!]))

new_question(starter,
['Please',choose,a,starter,for,your,meal],
single([pate,soup,melon]), none)

new_question(dessert,
['Please',choose,a,dessert,for,your,meal],
multiple(dessert),
file(the_complete_irish_cook))

new_relation(+Name,+Arity)

Record the Name and Arity of a flex relation. This information is used
when initialising the workspace.

Example

new_relation(parent, 2) .

new_rule(+Name,+Conditions,+Action,+Explanation,+Score)

Add a new rule to the current workspace. The rule is accessed through its
Name.

The Conditions (a Prolog call or calls) give the context under which the
rule is fireable.

The Action (a Prolog call or calls) represent the actual firing mechanism of
the rule.

Explanation is used when explaining the rule to a user. It is one of the
following:

text(M) Echo the list M purely as some canned text to be displayed.

file(F) Browse file F starting at the topic Name.

Score is any Prolog term which evaluates via the dereferencing mechanism
(see dereference/2) to a number. The Score parameter is used within

9. Flex Predicates 145

flex toolkit

the conflict resolution scoring system (crss/3) when deciding which is the
best rule to fire.

Examples

new_rule(prescribe_lomotil,
(prove(complains(patient,diarrhoea)),

disprove(suffers(patient,liver_complaints)),
disprove(pregnant(patient))),
prescribe(patient,lomotil),
file(medical7),
0) .

new_rule(fill_B_from_A
(

comparison(<,@(contents,jugB),@(capacity,jugB)),
comparison(>,@(contents,jugA),0)),

(new_value(@(contents,jugA),
@(contents,jugA) + @(contents,jugB)),

new_value(@(contents,jugB),@(capacity,jugB))
),

text([jugB,was,not,full,and,jugA,was,not,empty]),
@(contents,jugB)+@(capacity,jugB)) .

new_slot(+Attribute,+Frame,+Value)

Create (or replace) a current Value for a particular Attribute of a Frame
(or instance of a frame). The current Value overrides any default value, and
is used whenever the Attribute of the Frame is accessed.

Before the update is allowed any constraints (see new_constraint/8) on
the Value are first checked. Following the update, any associated demons
(see new_demon/7) are activated.

Examples

new_slot(habitat, moby_dick, [atlantic,arctic]) .

new_slot(predator, moby_dick, jonah) .

new_slot(food, moby_dick, fish) .

new_synonym(+Name,+Term)

Add (or replace if the Name already exists) a new synonym for the Term.

Whenever a KSL file is reconsulted, all occurrences of Name will be
replaced by Term.

Examples

new_synonym(boiling_point, 100) .

9. Flex Predicates 146

flex toolkit
6

new_synonym(weight_calc, its(volume)*its(density)) .

new_template(+Name,+Positive,+Negative)

Add the Positive and Negative templates for Name to the workspace.
This will not overwrite any existing templates for that Name, but will append
onto them.

Templates are used as a method of distributing the predicate Name amongst
the arguments of a relation. This will hopefully assist the readability of KSL
sentences.

A template is a non-empty list of partitions, where each partition is a
(possibly empty) list of words. The border between one partition and the
next indicates an argument position. There will always be one more partition
in a template than there are argument positions.

Examples

new_template(ontopof,
[[block],[is,on,top,of,block],[]],
[[block],[is,not,on,top,of,block],[]])

new_value(+Slot,+Term)

The given Term is first dereferenced down to some Value.

If the Slot is a compound term of the form @(Attribute,Frame) then
the following call is made :

new_slot(Attribute, Frame, Value) .

Otherwise, if the Slot is the name of a global variable then the following
call is made:

new_slot(Slot, global, Value) .

The frame global is a special frame reserved for the value of global
variables.

Example

new_value(@(contents,jugB), @(capacity,jugB)) .

new_value(temperature, boiling_point) .

new_watchdog(+Name,?Attribute,?Frame,+Context,+Check,+Action)

Create (or update if the Name already exists) a watchdog procedure which
controls the access to a slot (see isa_slot/3).

The Check (a Prolog call) is performed whenever there is a request for the

9. Flex Predicates 147

flex toolkit
7

Attribute of the Frame; in addition, the Context (a Prolog call) must
also hold before the watchdog can be invoked.

The Check occurs immediately before the access. Indeed, the access will
only be allowed if the Check succeeds. If the Check fails, then the Action
(a Prolog call) is initiated and the access (a call to isa_slot/3) will also fail.

Example

new_watchdog(security,
balance,
account,
outside_office_hours,
comparison(>,@(classification,user),99),
fail) .

nospy_chain

Disable the tracing of the forward chaining engine by removing any
spypoints.

nospy_fact(?Name)

Remove any spypoints that have been set for the fact of the given Name.

Example

nospy_fact(likes) .

nospy_rule(?Name)

Remove any spypoints that have been set on the named rule. If the Name is
a variable then spypoints are removed from all the rules.

Example

nospy_rule(_) .

nospy_slot(?Attribute, ?Frame)

Remove any spypoints which may have been set for the Attribute and
Frame.

Example

nospy_slot(colour, _) .

once(+Name,+Names,-Newnames)

This is a built-in program for re-organising the rule agenda after each cycle
of the forward chaining engine. The most recently fired rule is removed from

9. Flex Predicates 148

flex toolkit

the agenda. It is defined by the program:

once(Name, [Name|Names], Names).
once(Name, [Head|Names], [Head|Newnames]) :-

once(Name, Names, Newnames).

possibles(+Name,+Names,-Newnames)

This is a built-in program for re-organising the rule agenda after each cycle
of the forward chaining engine. It removes unsatisfied rules from the
agenda, and is defined by the program:

possibles(Name, Names, [Name|Newnames]) :-
append(_, [Name|NewNames], Names).

prove(+Goal)

Dereference each of the arguments of the Goal and then try to prove it.

If there is a Prolog program for the Goal, then that program is run,
otherwise the workspace is searched for a matching fact (see new_fact/1),
and in addition a check is made that there are no matching exceptions (see
new_exception/1).

Example

?- prove(likes(X, @(father,peter)))
X = mary

?- prove(likes(mary, fred)).
no

where fred is not the father of peter.

reconsult_rules(+FileName)

Reconsult a flex ksl file.

remember_exception(+Term)

Add the given Term as a new exception in the workspace, which can be
accessed through the prove/1 and disprove/1 procedures.

If subsequent backtracking happens, then the asserted exception will be
removed.

Example

remember_exception(likes(mary,fred)) .

remember_fact(+Term)

9. Flex Predicates 149

flex toolkit

Add the given Term as a new fact in the workspace, which can be accessed
through the prove/1 and disprove/1 procedures.

If subsequent backtracking happens, then the asserted fact will be removed.

Examples

remember_fact(male(fred)) .

remember_fact(likes(pamela, david)) .

remove_constraints

Clear from the workspace all constraints.

remove_constraints(+Attribute,+Frame)

Clear from the workspace of all constraints associated with the Attribute
of a Frame.

Example

remove_constraints(contents, _) .

remove_data

Clear the workspace of all data directives.

remove_defaults

Clear from the workspace all currently defined default values.

remove_defaults(+Frame)

Clear the workspace of all the default values for all the attributes of a
particular Frame.

Example

remove_defaults(whale) .

remove_demons

Clear from the workspace all demons.

remove_demons(+Attribute,+Frame)

Clear the workspace of all demons associated with a particular Attribute
of a Frame.

9. Flex Predicates 150

flex toolkit

Examples

remove_demons(_, global) .

remove_demons(contents, _) .

remove_exceptions

Clear the workspace of all known exceptions.

remove_facts

Clear the workspace of all known facts.

remove_frame(+Name)

Remove the named frame and all of its associated values (both current and
default) and any specialized inheritance links.

Example

remove_frame(mammal) .

remove_frames

Clear all currently defined frames from the flex workspace.

remove_function(+Name)

Remove the named function from the workspace.

remove_functions

Clear all functions from the workspace.

remove_groups

Clear the workspace of all known groups.

remove_instance(+Instance)

Clear from the workspace this specific Instance of some frame, together
with its associated current values, and any specialized inheritance links.

Example

remove_instance(moby_dick) .

9. Flex Predicates 151

flex toolkit

remove_instances

Clear from the workspace all currently defined instances of all frames.

remove_instances(+Frame)

Clear the workspace of all known instances of a particular Frame. This will
not only remove the links between the instances and the Frame, but will
also remove any existing slots for those instances.

Example

remove_instances(whale) .

remove_launches

Clear all known launch procedures from the workspace.

remove_launches(+Frame)

Clear the workspace of all launches associated with a particular Frame.

Example

remove_launches(employee) .

remove_links

Clear from the workspace all currently defined specialized inheritance links.

remove_links(+Frame)

Remove the specialized inheritance links for a particular Frame. This means
that inheritance will revert to the default inheritance of the existing frame
hierarchy.

Example

remove_links(moby_dick) .

remove_logic(+Logic)

Remove the named Logic from the workspace.

Example

remove_logic(inherit) .

remove_logics

9. Flex Predicates 152

flex toolkit

Clear the workspace of all specialized logics.

remove_questions

Clear the workspace of all known questions.

remove_relation(+Name, +Arity)

Abolish the relation Name/Arity from the workspace.

remove_relations

Abolish all known relations from the workspace.

remove_rules

Clear the workspace of all known rules.

remove_slots

Clear all current values from the workspace.

remove_slots(+Frame)

Clear the workspace of all known slots (i.e. current values) for a particular
Frame (and instances of the frame).

Example

remove_slots(moby_dick) .

remove_synonyms

Clear the workspace of all known synonyms.

remove_templates

Clear the workspace of all known templates.

remove_templates(+Name)

Clear the workspace of all templates, both positive and negative, for the
given Name.

Example

remove_templates(ontopof).

remove_watchdogs

9. Flex Predicates 153

flex toolkit

Clear from the workspace all watchdogs.

remove_watchdogs(+Attribute,+Frame)

Clear from the workspace all watchdog procedures associated with an
Attribute of a Frame.

Example

remove_watchdogs(_, account) .

restart

Clear the workspace of all instances, slot values, all facts and all exceptions,
re-enable all rules and finally run all data directives. It is defined by the
program:

restart :-
remove_instances,
remove_slots,
remove_facts,
remove_exceptions,
enable_rules,
run_data.

run_data

Invoke the actions associated with all data directives. If any action fails then
a message to indicate this is written to the current output stream.

run_data(+Name)

Invoke the action associated with the data Name. If the action fails then a
message to indicate this is written to the current output stream.

Example

run_data(start_up_configuration) .

some_instance(+Name,?Element)

Retrieve (or check) an Element which is an instance of Name. Name can be
the name of a group, the name of a frame or an instance or the name of a
unary relation (e.g. a type predicate in Prolog).

Examples

?- some_instance(colours, E).
E = black
E = blue
E = green
etc.

9. Flex Predicates 154

flex toolkit

?- some_instance(whale, E).
E = moby_dick

spied_chain

Test whether or not the forward chaining engine has a spypoint set on it.

spied_fact(?Name)

Test whether or not a spypoint is currently set.

Example

?- spied_fact(X).
X = dislikes

spied_rule(?Name)

Test whether or not the named rule currently has a spypoint set on it.

Example

?- spied_rule(prescribe_lomotil).
no

spied_slot(?Attribute, ?Frame)

Check whether or not a there is a spypoint on the Attribute and Frame.

A call to spied_slot/2 will backtrack through all currently spied slots and
unify Attribute with the name of the attribute and Frame with its frame.

The call fails if there are no current spypoints set.

Example

?- spied_slot(A, F) .
A = habitat, F = moby_dick
etc.

spy_chain

Set a spypoint on the forward chaining engine. Whenever there is a call to
forward_chain/[5,6,7] certain information will be written to the
current output stream. This information relates to the termination criterion
and the selection phase.

Furthermore, if any spypoints have been set on individual rules and those
rules are at some stage considered for selection, the conditions of those rules
will be traced by the debugger.

9. Flex Predicates 155

flex toolkit

spy_fact(?Name)

Whenever a fact or an exception whose principal functor is Name is either
added to or removed from the workspace, this information is written to the
current output stream.

In particular, if Name is a variable then all fact and exception transactions
will be monitored.

Examples

spy_fact(likes) .

spy_fact(dislikes) .

spy_rule(?Name)

Set a spypoint on the named rule. Whenever the forward chaining engine is
being traced (see spy_chain/0) and Name is considered as a potential rule
to fire, then the conditions associated with that rule are traced by the
debugger.

Example

spy_rule(prescribe_lomotil) .

spy_slot(?Attribute, ?Frame)

Set a spypoint on an Attribute of a Frame, such that whenever the slot
is updated the relevant information is displayed in the current output stream.

Examples

spy_slot(habitat, moby_dick).

spy_slot(_, albino).

spy_slot(temperature, _).

spy_slot(_, _).

sub_value(+Slot,+Term)

sub_value/2 can either be used to remove items from lists or to
decrement numbers.

The given Term is first dereferenced down to some Value. The Slot
should either be a compound term of the form @(Attribute,Frame) or
it is the name of a global variable, in which case the name of the frame to be
used is global.

9. Flex Predicates 156

flex toolkit
6

If the existing slot value and Value are both numbers, thenValue is
subtracted from the existing slot to form the new slot.

If the existing slot value and Value are both lists, then each member of the
Value list is removed from the existing slot list.

If the existing slot is a list, but Value is not, then the Value itself is
removed from that list.

Otherwise, the call to sub_value/2 will fail.

Examples

?- sub_value(@(colour,flag), [cyan]).
yes

?- sub_value(running_total, 3).
yes

?- sub_value(@(contents,jugA), 10).
yes

trigger_rule(+Name)

If Name is currently not a disabled rule and its conditions are satisfied, then
the action part of the rule is fired.

Examples

trigger_rule(prescribe_lomotil).

trigger_rule(fill_B_from_A) .

11. Example – Robbie Goes Shopping 157

flex toolkit
7

10. Example - Robbie Goes Shopping

We will now consider a flex example, using the KSL, adapted from the book
Artificial Intelligence by Patrick Henry Winston (published by Addison
Wesley), page 169.

The Problem

Robbie is a robot who bags groceries in the following way:

• ask the user to choose their initial shopping list.

• check that the list is 'complete' according to the requirements :

• if any snacks are on the list then there is also a drink.

• if butter is on the list then so is bread, and vice versa.

• pack the items on the shopping according to the requirements :

• pack any frozen items first.

• pack the large items, beginning with any large bottles.

• pack all the medium items.

• finally, pack any remaining small items.

We can consider the solution to this problem in two phases:

1 The configuration phase - in which the initial shopping list is
established.and then checked to see if everything necessary has been
included. The shopping list is then adjusted accordingly.

2 The resource allocation phase - in which the items on the final shopping
list are packed into bags in terms of their size and type.

The Configuration Section

The initial shopping list is established and then checked, to see if everything
necessary has been included. The shopping list is then adjusted accordingly.

11. Example – Robbie Goes Shopping 158

flex toolkit

The Shopping Question

To obtain the initial shopping list, we ask the user to choose some items
from the range of goods available.

It is convenient to group the goods under a single name which may then be
referenced by a question.

group goods
bread, butter, coffee, ice_cream, crisps,
salted_peanuts, beer, lemonade, washing_powder .

The following question may then be written.

question shopping
What is on your shopping list today ? ;
choose some of goods
because I must know your choice to continue .

The first line of the question is the actual text to be displayed when the
question is asked.

The second line indicates that the question will take the form of a multiple-
choice menu containing all the items in the group goods.

The third line contains the text to be displayed if the user enquires why the
question is being asked.

The Compatibility Rules

Having obtained the initial shopping list from the user, we will use forward
chaining rules to check the compatibility of the items on the initial shopping
list to create the final shopping list.

The set of goods needs to be differentiated further in the terms of the
compatibility criteria, i.e. if there are snacks on the shopping list then there
must also be a drink.

For convenience we define the two groups for snacks and drinks.

group snacks
crisps, salted_peanuts .

group drink
lemonade, beer .

We can now write the rules for the compatibility checks.

We need a rule to ensure that if the shopping includes some snacks there is

11. Example – Robbie Goes Shopping 159

flex toolkit

also a drink on the list. This can be thought of as follows.

If the shopping includes some snacks and does not include any drinks,
then ask the user to choose a drink and include that drink on the
shopping list.

The rule can be written in KSL in the following way.

rule check_snacks
if the shopping includes some snacks
and the shopping does not include some drink
then ask drink
and include the drink in the shopping
and write('You chose ')
and write(drink)
and write(' to have with your snack') and nl
because Snacks make you thirsty .

The fourth line of the rule forces the user to answer the drink question.

The drink question can be defined as follows.

question drink
You must select a drink ! ;
choose one of drink
because There are snacks on your shopping list .

This time, the user will be offered a single-choice menu comprising all the
items in the drink group. Note that we have re-used the same label for
both the group and the question. This is a matter of style, but is optional.

The second compatibility requirement concerns the inclusive linkage of
bread and butter. We can think of this as follows.

If the shopping list contains bread and does not contain butter then
include butter on the shopping list.

This can be written in KSL as follows

rule check_bread_and_butter
if the shopping includes bread
and the shopping does not include butter
then include butter in the shopping

and write('Including butter on shopping list')
and nl

because Bread is very dry by itself .

The following rule needs to be written to cover the alternate condition where
the shopping list contains butter and not bread.

rule check_butter_and_bread
if the shopping includes butter
and the shopping does not include bread

11. Example – Robbie Goes Shopping 160

flex toolkit

then include bread in the shopping
and write('Including bread on shopping list')
and nl

because What is the use of butter without bread .

Having written the compatibility rules, we need to determine how they will
be used.

Because there is no conflict between these rules (i.e. they do not compete by
having overlapping conditions) the order in which they are used is not
important. It is therefore best to select them on a first come first served
basis.

Also, once each rule has been selected and fired, its conditions can no
longer apply. In this case the most efficient way of updating the ruleset is by
removing each selected rule, which is equivalent to firing each rule once
only.

The ruleset that governs the checking rules would be written in KSL as
follows.

ruleset checking_rules
contains check_snacks,

check_bread_and_butter,
check_butter_and_bread ;

select rule using first come first served ;
update ruleset by removing each selected rule .

The Resource Allocation Section

In this section the items on the final shopping list are packed into carrier
bags in terms of their type, container and size .

The Packing Rules

The packing is to be done according to container type and size. Therefore
we can classify the data as follows.

The main difference between each of the goods is their size, which can be
either large, medium or small.

The packing requirements are that only three medium and small items are
allowed in a bag and only one large item is allowed in any bag.

frame item
default maximum_allowed is 3 .

frame large_item is an item
default size is large
and default maximum_allowed is 1 .

11. Example – Robbie Goes Shopping 161

flex toolkit

frame medium_item is an item
default size is medium .

frame small_item is an item
default size is small .

The medium_item and small_item frames automatically inherit 3 as the
value for maximum_allowed, whereas the large_item frame overrides
this value with 1.

The following KSL sentences define the characteristics of each shopping
item.

frame bread is a medium_item
default container is a plastic_bag and
default condition is fresh .

frame butter is a small_item
default container is a plastic_carton and
default condition is fresh .

frame coffee is a medium_item
default container is a jar and
default condition is freeze_dried .

frame ice_cream is a medium_item
default container is a cardboard_carton and
default condition is frozen .

frame crisps is a small_item
default container is a plastic_bag and
default condition is fragile .

frame salted_peanuts is a small_item
default container is a plastic_bag and
default condition is salted .

frame beer is a large_item
default container is a bottle and
default condition is liquid .

frame lemonade is a large_item
default container is a bottle and
default condition is liquid .

frame washing_powder is a large_item
default container is a cardboard_carton and
default condition is powder .

The KSL rules for packing the items into bags are hopefully self explanatory.

11. Example – Robbie Goes Shopping 162

flex toolkit

rule pack_frozen_item
if the shopping includes an Item
and the Item`s condition is frozen
then pack_item(Item) .

rule pack_large_bottle
if the shopping includes an Item
and the Item`s container is a bottle
and the Item`s size is large
then pack_item(Item) .

rule pack_other_large_item
if the shopping includes an Item
and the Item`s size is large
then pack_item(Item) .

rule pack_medium_item
if the shopping includes an Item
and the Item`s size is medium
then pack_item(Item) .

rule pack_small_item
if the shopping includes an Item
and the Item`s size is small
then pack_item(Item) .

The initial rule agenda should be structured to reflect the order in which the
rules are meant to be fired (i.e. check for frozen items first, then large bottles
etc.).

We note that if the conditions of a rule are not satisfied, they will not
become satisfied at any later stage. In this case the most efficient way to
update the rule agenda is to remove any unsatisfied rules.

The ruleset which governs this use of the forward chaining rules is defined in
the following way. The order and contents of the initial rule agenda is
determined in the ruleset, by the part indicated by the KSL keyword
contains.

ruleset packing_rules
contains pack_frozen_item,

pack_large_bottle,
pack_other_large_item,
pack_medium_item,
pack_small_item ;

select rule using first come first served ;
update ruleset by removing any unsatisfied rules .

Packing The Items

We do not know in advance how many carrier bags will be needed when
packing the groceries. So, each carrier bag must be generated as and when

11. Example – Robbie Goes Shopping 163

flex toolkit

required. The following frame is used as a mould for generating new carrier
bags.

frame carrier
default contents are empty .
default contents_count is 0 .

demon contents_counter
when the contents of Bag changes
and Bag is an instance of carrier
then add 1 to the contents_count of Bag .

This demon will be activated whenever we change the contents of any
carrier.

 Packing an item can be thought of as follows.

To pack an item, first choose a carrier bag for the item, then remove the
item from the shopping list and add the item to the contents of the bag.

action pack_item(Item);
if choose_bag(Bag, Item)
and remove the Item from the shopping
and include the Item in the contents of the Bag
and write('Packing ') and write(Item)
and write(' into ') and write(Bag) and nl .

We now need to establish how to choose a carrier bag for an item. This may
be done using a backward chaining relation, which can be thought of as
follows.

To choose a bag for an item, get an existing carrier bag, and check that
the number of items already in the bag is less than the maximum
allowed for the item about to be packed.

The first clause of the choose_bag relation is:

relation choose_bag(Bag, Item)
if the Bag is some carrier

whose contents_count is less than
the maximum_allowed of Item .

Whenever a carrier bag is needed it is always better to check existing bags
(indicated by the keywords Bag is some carrier) if at all possible.

The second clause of the choose_bag relation is

relation choose_bag(Bag, Item)
if gensym(bag_number_ , Bag)
and Bag is a new carrier .

Note that gensym/2 is a built-in predicate of the underlying Prolog system
for generating unique names from a given root symbol (bag_number_ in

11. Example – Robbie Goes Shopping 164

flex toolkit

this case).

The Initial Goal

Having defined all the parts of the program, we now need to put them
together into an initial goal that starts the whole process going.

action start_robot ;
do restart_robot
and get_shopping
and check_shopping
and pack_shopping .

action restart_robot ;
do restart
and init_gensym(bag_number_).

The relation restart/0 is a built-in flex predicate for removing all current
slot values, and thus re-instating any default slot values.

The relation init_gensym/1 is expected to be a predicate from the
underlying Prolog system for resetting the given root symbol (bag_number_
in this case) to zero.

action get_shopping ;
do ask shopping
and write('Initial shopping list... ')
and write(shopping) and nl.

The action get_shopping asks the shopping question and then echoes to
the screen the user's choice.

The actions check_shopping and pack_shopping initiate the
appropriate forward chaining cycles and tell the user what is going on at
each stage of the problem.

action check_shopping ;
do write('Compatibility checking phase')
and invoke ruleset checking_rules
and write('Final shopping list... ')
and write(shopping) and nl.

action pack_shopping ;
do write('Packing phase')
and invoke ruleset packing_rules
and for every Bag is some carrier

do write('Contents of ')
and write(Bag)
and write(the contents of Bag) and nl

end for .

11. Example – Robbie Goes Shopping 165

flex toolkit

Templates

Having finished the example, you may feel the choose_bag(Bag,
Item) statements are awkward to use within the code. We can now define
templates to replace them with more elegant statements.

Example

template choose_bag
choose a carrier ^ for ^ .

This template definition will allow us to replace every occurrence of

choose_bag(Bag, Item)

with the statement

choose a carrier Bag for Item

so making the code easier to read.

For example, we could rewrite the pack_item action using this template as
follows.

action pack_item(Item);
if choose a carrier Bag for Item
and remove the Item from the shopping
and include the Item in the contents of the Bag
and write('Packing ') and write(Item)
and write(' into ') and write(Bag) and nl .

Appendix A - Examples 166

flex toolkit
6

Appendix A - Examples

This appendix includes two examples used to illustrate some of the
techniques involved in writing flex programs.

Example 1 is an animal taxonomy, which is used to demonstrate some of
the features of the frame system of flex.

Example 2 is a forward chaining solution to the Water Jugs problem, which
demonstrates the use of rule transition networks to update the rule agenda
used in forward chaining.

Example 1 - Analysing a Taxonomy

The purpose of this example is to illustrate most of the concepts within the
frame sub-system of flex. This involves the representation (using constructs
from the Knowledge Specification Language) of a taxonomy for the animal
kingdom, together with an algorithm for identifying species. We then give a
couple of example questions that can be posed.

As in the rest of this manual, in the following examples the KSL keywords
are emboldened for clarity (they should not be distinguished in source texts).

The Animal Kingdom

The animal kingdom can be split into three main groups, namely mammal,
fish and bird. Each of these main groups has its own set of characteristics
which separate it from the others. The following KSL statements describe
this frame hierarchy, together with the associated default values.

frame animal
default blood is warm .

frame mammal is an animal
default skin is fur and
default habitat is the land and
default motions are walk .

frame fish is an animal
default skin is scale and
default habitat is water and
default motions are { swim } and

Appendix A - Examples 167

flex toolkit
7

default blood is cold .

frame bird is an animal
default skin is feather and
default habitat is a tree and
default motions are { walk or fly } .

This is the most basic form of taxonomy, whereby each sub-class (mammal,
bird and fish) has a single parent class (animal). Furthermore, the
blood characteristic of an animal can be inherited by all three sub-classes.

Fish can inherit the characteristic that their blood is warm even though
there is a local default to the contrary. In effect, there are two solutions to
the query :

Q: What temperature is the blood of a fish ?

A: Firstly, the blood of a fish is cold (from fish itself)
A: Secondly, the blood of a fish is warm (from animal)

Representing Mammals

The following diagram illustrates a few of the different types of mammals,
together with some of their characteristics.

Appendix A - Examples 168

flex toolkit

herbivore

rodent human

habitat = land
motions = walk
skin = fur

habitat = sewer
status = pest
tail = short, thin

brain = large
legs = 2
skills = tool_making

mammal carnivore
meal = plant
teeth = molars

squirrel
size = small
tail = long, bushy

skills = fire_making

feline

meal = meat
teeth = canines

legs = 4
speed = very fast
tail = long, furry

mowgli

tiger
habitat = jungle
meal = human
size = large
state = predator

shere_khan
meal = mowgli

cat
size = medium

sammy

sylvester
manx

ta
il

habitat = my house

habitat = my house
meal = tweety_pie
skin = shaggy

The following KSL statements describe the frame hierarchy above, together
with the associated default values.

frame carnivore
default meal is meat and
default teeth are canines .

frame herbivore
default meal is plant and
default teeth are molars .

Note that carnivores and herbivores have no parent frames. Their role is
merely to define a set of default characteristics.

Appendix A - Examples 169

flex toolkit

frame feline is a mammal , carnivore
default legs are 4 and
default speed is 'very fast' and
default tail is { long and furry } .

frame rodent is a mammal , herbivore
default habitat is sewer and
default status is pest and
default tail is { short and thin } .

frame human is a mammal
default brain is large and
default legs are 2 and
default skills are { tool_making } .

frame cat is a feline
default size is medium .

frame tiger is a feline
default habitat is jungle and
default meal is human and
default state is predator and
default size is large .

frame squirrel is a rodent
default size is small and
default tail is { long and bushy } .

Unlike most other rodents, whose tails are generally short and thin, the
tail of a squirrel is long and bushy.

frame manx is a cat ;
do not inherit tail .

Unlike other cats, a manx does not have a tail. This is represented by not
inheriting the tail attribute.

instance sammy is a cat ;
habitat is my_house ;
inherit meal from herbivore .

The instance called sammy illustrates the technique of overriding the frame
hierarchy for a particular attribute. sammy will inherit its meal type from
herbivore.

instance sylvester is a cat ;
habitat is my_house ;
meal is tweety_pie ;
skin is shaggy .

instance shere_khan is a tiger ;
meal is mowgli .

instance mowgli is a human ;
skills are { fire_making } .

Appendix A - Examples 170

flex toolkit

Representing Birds

The following diagram illustrates the bird taxonomy.

bird

penguin canary

tweety_pie

habitat = tree
motions = fly
skin = feather

habitat = land
motions = walk, swim
size = medium

colour = yellow
size = small

This can be represented by the KSL statements :-

frame penguin is a bird
default habitat is the land and
default motions are { walk and swim } and
default size is medium .

frame canary is a bird
default colour is yellow and
default size is small .

instance tweety_pie is a bird .

Appendix A - Examples 171

flex toolkit

Representing Fish

The following diagram illustrates the two major sub-classes of fish, namely
sea water fish and fresh water fish.

fish

fresh_water_fish sea_water_fish

salmon

freddie

habitat = water
motions = swim
skin = scale

habitat = river habitat = sea

habitat = fish_tank
size = large

which is represented by the following KSL sentences :

frame 'sea water fish' is a kind of fish
default habitat is the sea .

frame 'fresh water fish' is a kind of fish
default habitat is a river .

frame salmon is a sea_water_fish, fresh_water_fish .

instance freddie is a salmon ;
habitat is fish_tank and
size is large .

The order of the parents for the salmon frame is important, as this
determines the order in which values are potentially inherited. For example,
the habitat of a salmon is firstly the sea (from 'sea water fish'),
secondly a river (from 'fresh water fish') and thirdly water (from
fish itself).

Appendix A - Examples 172

flex toolkit

The Identification Algorithm

The previous sections have described a small section of the animal kingdom,
including the inter-relationships of different species (the frame hierarchy) and
some of their characteristics (default values).

The following KSL program can be used to identify a particular species
within the example. Note, though, that the algorithm itself is not specific to
the example, but could equally be used for identifying classes within any
taxonomy.action run(Frame,PosAttribs,NegAttribs)

do [isa_frame(Frame, _) or isa_instance(Frame,_)
]

and for every PosAttr-PosVal is included in
PosAttribs

do check [the PosAttr of Frame includes PosVal
or the PosAttr of Frame is equal to PosVal

]
end for

and for every NegAttr-NegVal is included in
NegAttribs

do check [the NegAttr of Frame does not
include

NegVal and the
NegAttr of Frame is not equal to

NegVal
]

end for .

Given a set of positive clues and a set of negative clues, the algorithm will
identify any class which has each of the positive attributes but none of the
negative attributes.

isa_frame/2 and lookup/3 are built-in flex predicates for retrieving the
names of frames and for looking up values of frame attributes, respectively.
The lookup/3 procedure will automatically take into account any
inheritance through the frame hierarchy.

Some Example Questions

Using the identification algorithm above we can ask, for example, the
following two questions :

• Which type of animal eats meat ?

• Which type of animal lives on land, is medium in size but does not eat
meat ?

Appendix A - Examples 173

flex toolkit

These questions are posed by the following Prolog queries.

?- identify(Class, [meal-meat], []).
Class = carnivore
Class = feline
Class = cat
Class = tiger
Class = manx

?- identify(Class,
[habitat-land,size-medium],
[meal-meat])

Class = penguin

Appendix A - Examples 174

flex toolkit

Example 2 - The Water Containers

The purpose of this example is to illustrate the conflict resolution algorithm
for selecting rules from agendas.

The Problem

There are two water containers of differing sizes, one of which is called the
master (capacity 7 litres) and the other is called the slave (capacity 4 litres).
Water, or indeed any liquid, can be transferred between the two by emptying
one into the other, or by filling one from the other. In addition, the
containers can be either filled completely from a reservoir, or emptied
completely into a sink.

The problem is to find a sequence of operations which will result in the
master containing exactly 6 litres.

The Containers

The three principal attributes of a container are its contents, its capacity and
its spare capacity (being the difference between capacity and contents). We
shall use a template to assist the readability of the attribute spare capacity.

template spare
spare capacity .

The default size of a container is 7 litres, and its initial contents are empty.

frame container
default contents are 0 and
default capacity is 7 and
default spare capacity is

its capacity minus its contents .

The master is a regular container, but the capacity of the slave is only 4
litres.

instance master is a container .

instance slave is a container ;
capacity is 4 .

Appendix A - Examples 175

flex toolkit

The Tests

We shall declare some templates to assist the readability of the tests.

template non_full
^ is not full .

template non_empty
^ is not empty .

template enough
^ contains more than ^ ;
^ does not contain more than ^ .

which are defined by the following relationships.

relation X is not full
if X`s contents are below X`s capacity .

relation X is not empty
if X`s contents are above 0 .

relation X contains more than Z
if X`s contents are above Z .

The Operations

Again, we shall declare some templates to assist the readability of the
operations.

template full_up
fill up ^ .

template empty_out
empty out ^ .

template fill_from
fill ^ from ^ .

template empty_into
empty ^ into ^ .

The two operations for transferring water from one container to the other
are to completely empty the contents of one into the other, and to
completely fill one from the other.

action fill up X ;
do X`s contents become X`s capacity .

action empty out X ;
do X`s contents become 0 .

Appendix A - Examples 176

flex toolkit
6

action fill X from Y ;
do subtract X`s spare capacity from Y`s contents
and fill up X .

action empty X into Y ;
do add X`s contents to Y`s contents
and empty out X .

The Rules

There are 4 rules governing the circumstances when the master container
can be changed, and 4 similar rules for the slave container.

The scores attached to each rule are not arbitrary, but were reached through
a phase of trial and error. By keeping the rules unchanged, but adjusting
their relative scores, different behaviours were observed. The final scoring
system is designed to reach a state in which the master contains 6 litres.

rule fill_master
if the master is not full
then fill up the master
score master`s spare capacity .

rule empty_master
if the master is not empty
then empty out the master
score master`s contents .

rule fill_master_from_slave
if the master is not full
and the slave contains more than

the master`s spare capacity
then fill the master from the slave
score master`s contents + slave`s contents .

rule empty_master_into_slave
if the master is not empty
and the master does not contain more than

the slave`s spare capacity
then empty the master into the slave
score master`s capacity - slave`s contents .

rule fill_slave
if the slave is not full
then fill up the slave
score slave`s spare capacity .

rule empty_slave
if the slave is not empty
then empty out the slave
score slave`s contents .

Appendix A - Examples 177

flex toolkit
7

rule fill_slave_from_master
if the slave is not full
and the master contains more than

the slave`s spare capacity
then fill the slave from the master
score slave`s contents + master`s contents .

rule empty_slave_into_master
if the slave is not empty
and the slave does not contain more than

the master`s spare capacity
then empty the slave into the master
score slave`s capacity - master`s contents .

The Rule Network

The problem can be further refined by noting that, following each operation,
it only makes sense for a subset of the other operations to be considered.
For example, having filled a container it does not make sense to then empty
it, as you may as well have emptied it in the first place.

The following definitions state which operations can follow which other
operations. Note that each group name is also the name of a rule, and the
group contains the names of the rules which can follow it.

group fill_master
empty_master_into_slave, fill_slave_from_master,
fill_slave, empty_slave .

group empty_master
fill_master_from_slave, empty_slave_into_master,
fill_slave, empty_slave .

group fill_master_from_slave
empty_master, fill_slave, empty_slave .

group empty_master_into_slave
fill_master, fill_slave, empty_slave .

group fill_slave
empty_slave_into_master, fill_master_from_slave,
fill_master, empty_master .

group empty_slave
fill_slave_from_master, empty_master_into_slave,
fill_master, empty_master .

group fill_slave_from_master
empty_slave, fill_master, empty_master .

group empty_slave_into_master
fill_slave, fill_master, empty_master .

Appendix A - Examples 178

flex toolkit

group start_rules
fill_master, fill_slave .

The Ruleset

The problem starts with both jugs being empty, we can therefore limit the
initial rule agenda to two rules: the rule that fills the master jug and the rule
that fills the slave jug. For convenience we have put these rules in a group
called start_rules. The rule agenda will subsequently be updated using
the rule transition network that we defined above.

We have attached scores to the rules to give them different chances of being
selected according to the situation. The rules will then be selected using the
conflict resolution scoring system with a threshold of 6. This means that the
first rule found whose score is above 6 will be fired.

The solution to the problem will be found (so we want the forward chaining
engine to terminate) if at any point the contents of any container are 6.

The ruleset that defines this method of selecting rules, updating the rule
agenda and terminating the forward chaining is written as follows.

ruleset water_jugs
contains start_rules ;
select rule using

conflict resolution with threshold 6 ;
update ruleset using rule transition network ;
initiate by doing restart ;
terminate when

the contents of any container are 6 .

The action that triggers the whole program can then be written as follows. (The
spy_chain/0 built-in flex predicate causes execution information to be written to the
current output stream.)

action demo ;
do spy_chain
and invoke ruleset water_jugs .

Appendix B - Formal Definition of KSL 179

flex toolkit

Appendix B - Formal Definition of KSL

In this appendix we formally describe the syntax of the Knowledge
Specification Language. We use a Definite Clause Grammar (DCG) as its
definition. Reserved words of the language are emboldened.

The three principal components of any language are terms (descriptions of
objects of the world being defined), formulae (concepts and operations over
such objects) and sentences (valid statements which relate the concepts and
operations). The DCG below defines the sentences, formulae and terms of
the KSL. This is preceded by some general grammar structures used
throughout those definitions.

Grammatical Structures

Optional Structures

optional(Grammar_Rule) -->
Grammar_Rule .

optional(Grammar_Rule) -->
[] .

Disjunction & Conjunction

disjunction(Grammar_Rule) -->
sequence_separator(conjunction(Grammar_Rule), [or]) .

conjunction(Grammar_Rule) -->
sequence_separator(Grammar_Rule, [and]) .

Sequences

sequence(Grammar_Rule) -->
Grammar_Rule,
sequence(Grammar_Rule) .

sequence(Grammar_Rule) -->
[] .

sequence_separator(Grammar_Rule, Separator) -->
Grammar_Rule,
separator_continuation(Grammar_Rule, Separator) .

separator_continuation(Grammar_Rule, Separator) -->
Separator,
Grammar_Rule,

Appendix B - Formal Definition of KSL 180

flex toolkit

separator_continuation(Grammar_Rule, Separator) .

separator_continuation(Grammar_Rule, Separator) -->
[] .

KSL Sentences

In this_section we describe the valid sentences in which KSL objects and
formulae can occur. They constitute what can and cannot be stated in a KSL
program.

Note that each sentence begins with a keyword to identify its category, is
usually followed by a unique identifier within that category (note that the
same identifier can be used in different categories), and is always terminated
by a full-stop.

The categories of KSL sentences are :

• Frame
• Instance
• Launch
• Demon_
• Constraint_
• Watchdog_
• Rule_
• Ruleset_
• Action_
• Relation_
• Function_
• Command_
• Data_
• Question_
• Group_
• Synonym_
• Template

Frame

frame -->
[frame],
name(frame),
optional(parent_frames),
optional(default_values),
optional(inheritance_links),
[.] .

parent_frames -->
ako,

Appendix B - Formal Definition of KSL 181

flex toolkit

sequence_separator(name(parent), [,]) .

ako -->
[is,a,kind,of] |
[is,an,instance,of] |
[is,a] |
[is,an] .

default_values -->
[;],
sequence_separator(default_value, [and]) .

default_value -->
[default],
name(attribute),
equate,
expression .

equate -->
[is] |
[are] .

inheritance_links -->
[;],
sequence_separator(inheritance_link, [and]) .

inheritance_link -->
[inherit],
name(attribute),
[from],
sequence_separator(name(frame), [,]) .

Instance

instance -->
[instance],
name(instance),
ako,
name(parent_frame),
optional(initial_values),
optional(inheritance_links),
[.] .

ako -->
[is,a,kind,of] |
[is,an,instance,of] |
[is,a] |
[is,an] .

initial_values -->
[;],

Appendix B - Formal Definition of KSL 182

flex toolkit

sequence_separator(initial_value, [and]) .

initial_value -->
name(attribute),
equate,
expression .

equate -->
[is] |
[are] .

inheritance_links -->
[;],
sequence_separator(inheritance_link, [and]) .

inheritance_link -->
[inherit],
name(attribute),
[from],
sequence_separator(name(frame), [,]) .

Launch

launch -->
[launch],
name(launch),
[when],
variable(instance),
isa_new,
name(parent_frame),
optional(context),
[then],
conjunction(directive),
[.] .

isa_new -->
[is,a,new,instance,of] |
[is,a,new] .

context -->
[and],
disjunction(condition) .

Appendix B - Formal Definition of KSL 183

flex toolkit

Demon

demon -->
[demon],
name(demon),
[when],
trigger,
change,
optional(from_value),
optional(to_value),
optional(context),
[then],
conjunction(directive),
[.] .

trigger -->
variant(schema) .

change -->
[changes] |
[change] .

from_value -->
[from],
expression .

to_value -->
[to],
expression .

context -->
[and],
disjunction(condition) .

Constraint

constraint -->
[constraint],
name(constraint),
[when],
trigger,
change,
optional(from_value),
optional(to_value),
optional(context),
[then,check],
disjunction(condition),
optional(otherwise),
[.] .

trigger -->

Appendix B - Formal Definition of KSL 184

flex toolkit

variant(schema) .

change -->
[changes] |
[change] .

from_value -->
[from],
expression .

to_value -->
[to],
expression .

context -->
[and],
disjunction(condition) .

otherwise -->
[otherwise],
conjunction(directive) .

Watchdog

watchdog -->
[watchdog],
name(watchdog),
[when],
trigger,
request,
optional(context),
[then,check],
disjunction(condition),
optional(otherwise), [.] .

trigger -->
variant(schema) .

request -->
[is,requested] |
[are,requested] .

context -->
[and],
disjunction(condition) .

otherwise -->
[otherwise],
conjunction(directive) .

Appendix B - Formal Definition of KSL 185

flex toolkit

Production Rule

production_rule -->
[rule],
name(rule),
production_conditions,
conjunction(directive),
optional(explanation),
optional(score),
[.] .

production_conditions -->
[if],
disjunction(condition),
[then] .

production_conditions -->
[always,do] .

explanation -->
[;],
[browse,file],
name(file) .

explanation -->
[;],
[because],
sequence(token) .

score -->
[;],
[score],
expression .

Ruleset

ruleset-->
[ruleset],
name(ruleset),
[contains],
initial_rule_agenda,
optional(initiate),
optional(terminate),
optional(select_rule),
optional(update_ruleset),
optional(misfires),
[.] .

initial_rule_agenda -->
[all, rules] .

Appendix B - Formal Definition of KSL 186

flex toolkit
6

initial_rule_agenda -->
sequence_separator(name(rule), [,]) .

initiate-->
[;],
[initiate, by, doing],
conjunction(directive) .

terminate -->
[;],
[terminate, when],
conjunction(conditions) .

select_rule -->
[;],
[select, rule, using],
selection_method .

selection_method -->
[conflict, resolution, with, threshold],
expression .

selection_method -->
[conflict, resolution] .

selection_method -->
[first, come, first, served] .

selection_method-->
name(user_method) .

update_ruleset -->
[;],
[update, ruleset],
update_method .

update_method-->
[by, removing, each, selected, rule] |
[by, promoting, each, selected, rule] |
[by, demoting, each, selected, rule] |
[by, cyclic, rotation, of, rules] |
[by, removing, any, unsatisfied, rules] |
[using, rule, transition, network] .

update_method-->
[using],
name(user_update) .

misfires -->
[;], [when, a, rule, misfires, do],

Appendix B - Formal Definition of KSL 187

flex toolkit
7

name(user_misfire) .

Action

action -->
[action],
procedure,
optional([;]),
conjunction(directive),
[.] .

Relation

relation -->
[relation],
procedure,
optional(relation_body),
[.] .

relation_body -->
[if],
disjunction(condition) .

Function

function -->
[function],
name(function),
['('],
sequence_separator(expression, [',']),
[')'],
[=],
expression,
optional(where_clause),
[.] .

where_clause -->
where,
disjunction(condition) .

where -->
[where] |
[such,that] |
[:] .

Command

command -->
[do],
conjunction(directive), [.]

Appendix B - Formal Definition of KSL 188

flex toolkit

Data

data -->
[data],
name(data),
conjunction(directive),
[.] .

Question

question -->
[question],
name(question),
question_form,
[.] .

question_form -->
[answer,is],
variable(answer),
where,
disjunction(condition) .

question_form -->
sequence(tokens), % this forms the text of the question
[;],
answer_form,
optional(explanation) .

answer_form -->
menu_form,
menu_items .

answer_form -->
[input],
optional([is]),
input_form .

menu_form -->
[choose,from] |
[choose,one,of] |
[choose,some,of] .

menu_items -->
name(group).

menu_items -->
sequence_separator(token, [',']) .

input_form -->
[set] |

[name] |

Appendix B - Formal Definition of KSL 189

flex toolkit

[number] |
[integer] .

input_form -->
variable(answer),
where,
disjunction(condition) .

where -->
[where] |
[such,that] |
[:] .

explanation -->
[;],
[browse,file],
name(file) .

explanation -->
[;],
[because],
sequence(token) .

Group

group -->
[group],
name(group),
sequence_separator(token, [',']),
[.] .

Synonym

synonym -->
[synonym],
name(synonym),
expression,
[.] .

Template

template -->
[template],
name(template),
template_form, % this forms the positive part of the template
optional(negative_form), % this forms the negative part of the
template
[.] .

negative_form -->
[;],

Appendix B - Formal Definition of KSL 190

flex toolkit

template_form .

template_form -->
sequence_separator(sequence(token), ['^']) .

KSL Formulae

The formulae of KSL are used to establish relationships between the objects
of KSL. This falls into two distinct areas; conditions which test whether or
not something is currently true, and directives which change the current
state to some new state.

Condition

condition -->
['['],
disjunction(condition),
[']'] .

condition -->
[not],
condition .

condition -->
control_statement .

condition -->
procedure .

condition -->
variable(frame/instance),
ako,
name(frame),
optional(conjunction(slot_test)) .

ako -->
[is,an,instance,of] |
[is,a,kind,of] |
[is,an] |
[is,a] .

slot_test -->
[whose],
name(attribute),
comparison .

condition -->
expression,

comparison .

Appendix B - Formal Definition of KSL 191

flex toolkit

Comparison

comparison -->
equate,
expression .

equate -->
[=] |
[\=] .

equate -->
is,
optional([not]),
equal .

equal -->
[equal,to] |
[different,from] .

is -->
[is] |
[are] .

comparison -->
compare,
expression,
optional(ordering) .

compare -->
[>] |
[>=] |
[<] |
[=<] .

compare -->
is,
optional([not]),
compared .

compared -->
[above] |
[at,or,above] |
[below] |
[at,or,below] |
[greater,than] |
[greater,than,or,equal,to] |
[less,than] |
[less,than,or,equal,to] .

Appendix B - Formal Definition of KSL 192

flex toolkit

ordering -->
[according,to],
order .

order -->
name(group).

order -->
['{'],
sequence_separator(token, [',']),
['}'] .

comparison -->
includer,
expression .

includer -->
[includes] |
[include] |
[does,not,include] |
[do,not,include] .

includer -->
is,
optional([not]),
[included,in] .

is -->
[is] |
[are] .

Directive

directive -->
['['],
conjunction(directive),
[']'] .

directive -->
control_statement .

directive -->
procedure .

directive -->
variable(instance),
new,
name(frame),
optional(conjunction(new_slot_value)) .

new -->

Appendix B - Formal Definition of KSL 193

flex toolkit

[is,a,new] |
[is,another] .

new_slot_value -->
[whose],
name(attribute),
is,
expression .

is -->
[is] |
[are] .

directive -->
variant(simple),
assign,
expression .

assign -->
[becomes] |
[become] |
[:=] .

directive -->
[add],
expression,
[to],
variant(simple) .

directive -->
[subtract],
expression,
[from],
variant(simple) .

directive -->
[include],
expression,
[in],
variant(simple) .

directive -->
[remove],
expression,
[from],
variant(simple) .

directive -->
assertion,
optional([that]),
optional([not]),

Appendix B - Formal Definition of KSL 194

flex toolkit

procedure .

assertion -->
[remember] |
[forget] .

Control Statement

control_statement -->
[do],
directive .

control_statement -->
[check],
optional([that]),
condition .

control_statement -->
[if],
disjunction(condition),
[then],
conjunction(directive),
[else],
conjunction(directive),
[end,if] .

control_statement -->
[repeat],
conjunction(directive),
[until],
disjunction(condition),
[end,repeat] .

control_statement -->
[while],
disjunction(condition),
[do],
conjunction(directive),
[end,while] .

control_statement -->
[for],
universal,
disjunction(condition),
[do],
conjunction(directive),
[end,for] .

universal -->
[all] |

Appendix B - Formal Definition of KSL 195

flex toolkit

[every] |
[each] .

control_statement -->
[for],
variable(counter),
[from],
expression,
[to],
expression,
optional(step),
[do],
conjunction(directive),
[end,for] .

step -->
[step],
expression .

Procedure

procedure -->
[$],
procedure .

procedure -->
“an instance of a template declaration”.

procedure -->
[ask],
name(question) .

procedure -->
name(procedure),
['('],
sequence_separator(expression, [',']),
[')'] .

procedure -->
name(procedure),
optional(proposition) .

proposition -->
[is,true] |
[is,false] |
[is,not,true] |
[is,not,false] .

Appendix B - Formal Definition of KSL 196

flex toolkit
6

KSL Objects

This section describes the actual objects of KSL (i.e. those constructs which
correspond to entities in your particular domain). They range from variants
which can change in value through time (by assignment) to set abstractions
which portray a (possibly infinite) collection of objects.

Variant

variant(Type) --> % Type can be simple or schema
['('],
variant(Type),
[')'] .

variant(Type) -->
variant(Type), % attribute
[of], % 'of' is right associative
variant(Type) . % frame or instance

variant(Type) -->
variant(Type), % frame or instance
[`,s], % '`s' is left associative
variant(Type) . % attribute

variant(Type) -->
optional(determiner),
name(variant) .

determiner -->
[the] |
[an] |
[a] .

variant(schema) -->
existential,
name(variant) .

existential -->
[some,instance,of] |
[any,instance,of] |
[some] |
[any] .

variant(schema) -->
thing .

Appendix B - Formal Definition of KSL 197

flex toolkit
7

thing -->
[something] |
[anything] |
[somebody] |
[anybody] .

Set

implicit_set -->
['{'],
variable(member),
where,
disjunction(condition),
['}'] .

where -->
[where] |
[such,that] |
[:] .

implicit_set -->
['{'],
disjunction(explicit_set),
['}'] .

explicit_set -->
sequence_separator(expression, set_join) .

set_join -->
[','] |
[and] .

implicit_set -->
universal,
name(group/frame/instance),
optional(conjunction(slot_test)) .

universal -->
[all] |
[every] |
[each] .

slot_test -->
[whose],
name(attribute),
comparison .

General Term

term -->
[$],

Appendix B - Formal Definition of KSL 198

flex toolkit

term .

term -->
['('],
expression,
[')'] .

term -->
variant(schema) .

term -->
implicit_set .

term -->
name(functor),
['('],
sequence_separator(expression, [',']),
[')'] .

term -->
[if],
disjunction(condition),
[then],
expression,
[else],
expression .

term -->
variable(answer),
where,
disjunction(condition) .

where -->
[where] |
[such,that] |
[:] .

term -->
existential,
name(group/frame/instance),
optional(conjunction(comparison)) .

existential -->
[some,instance,of] |
[any,instance,of] |
[some] |
[any] .

slot_test -->
[whose],

name(attribute),

Appendix B - Formal Definition of KSL 199

flex toolkit

comparison .

term -->
owner,
name(attribute) .

owner -->
[its] |
[their] .

term -->
optional([the]),
[answer,to],
name(question) .

term -->
[something] |
[somebody] |
[anything] |
[anybody] |
[nothing] |
[nobody] |
[empty] .

term -->
optional(determiner),
name(identifier) .

determiner -->
[the] |
[an] |
[a] .

term -->
number .

Arithmetic Expression

expression -->
term .

expression -->
term,
binaryop,
expression .

binaryop -->
[+] |
[-] |
[*] |
[/] |

Appendix B - Formal Definition of KSL 200

flex toolkit

[^] .

binaryop -->
[plus] |
[minus] |
[times] |
[divided,by] |
[to,the,power,of] .

expression -->
unaryop,
expression .

unaryop -->
[-] .

unaryop -->
[minus] .

Appendix C - KSL Keyword Glossary 201

flex toolkit

Appendix C - KSL Keyword Glossary

This glossary defines the reserved words of the Knowledge Specification
Language. The KSL context for each entry determines whether it occurs as
part of an object, as part of a formula about objects, or whether it is used
directly within a sentence.

a / an

KSL Context Sentence
Description Used in defining the parents of a frame.
Used with is
Example frame bird is an animal

KSL Context Object
Description A determiner which is an optional prefix to nouns.
Example if the favourite_food of X is a

banana
then ...

above

KSL Context Formula
Description Checks that the 1st object is greater than the 2nd.
Example if the temperature is above

freezing_point then ...

according

KSL Context Formula
Description Indicates a non-typographical comparison of two

objects. Instead, the group which follows is used to
determine the relative values of the objects.

Used with to
Example if the likelihood of frost is less

than probable according to
fuzzy_ordering and ...

action

KSL Context Sentence
Description Collect together a set of directives as an action.
Used with ;
Example action print_table ;

for every C is some class
do ...

Appendix C - KSL Keyword Glossary 202

flex toolkit

add

KSL Context Formula
Description Arithmetic addition.
Used with to
Example if ...

then add 1 to running_total

all

KSL Context Object
Description Universal quantifier over groups (refers to all the

members of a group) and frames (refers to all
instances or sub-classes of a frame).

Example if the colour of the flag includes
all colours then ...

always

KSL Context Sentence
Description Indicates an unconditional forward chaining rule.
Used with do
Example rule catchall

always do write('No more rules!') .

and

KSL Context Formula
Description Joins together conditions in the IF part of a rule, or

directives in the THEN part of a rule.
Example if the door is open

and the time_of_day is evening
then shut_the_door
and lock_the_door

KSL Context Object
Description Enumerates the individuals in a set.
Used with { }
Example if the staff include { john and mary

}
then ...

another

see new.

Appendix C - KSL Keyword Glossary 203

flex toolkit

answer

KSL Context Object
Description Retrieves the answer to a question. If the question

has not previously been asked, then it is
automatically asked when the answer is requested.

Used with to
Example if the answer to entree is any meat

and the answer to wine is not some
red_wine
then ...

any

KSL Context Object
Description An existential quantifier over groups (refers to a

member of the group) and frames (refers to an
instance or sub-class of the frame).

Example if the colour of any brick is red
then ...

anybody / anything

KSL Context Object
Description An anonymous variable which can refer to any

object whatsoever.
Example if the age of anybody is at or below

18 then ...

are

KSL Context Formula
Description Used in the comparison of two objects, one of

which is plural.
Example if the jug`s contents are not equal

to the jug`s capacity then ...

KSL Context Formula
Description Assignment of a value to a plural slot or global

variable.
Example if ...

then jugA`s contents are jugA`s
capacity

ask

KSL Context Formula
Description Forces the named question to be asked.
Example if ...

then ask entree

Appendix C - KSL Keyword Glossary 204

flex toolkit

at

KSL Context Formula
Description Used in the comparison of two objects to include

possible equality.
Used with or
Example if the temperature is at or above

freezing_point

because

KSL Context Sentence
Description Attaches an optional explanation (some canned text)

to a rule or a question, which can then be used to
explain how the rule was fired or why the question
is being asked.

Example question starter
Please choose a starter for the meal
;
choose from pate, soup, melon ;
because The starter is an integral
part of a meal .

become / becomes

KSL Context Formula
Description Assignment of a value to a slot or global variable.
Example if ...

then jugA`s contents becomes 0

below

KSL Context Formula
Description Checks that the 1st object is less than the 2nd.
Example if the temp is below boiling then ...

browse

KSL Context Sentence
Description Attaches an optional explanation (name of a

specially formatted disk file) to a rule or a question,
which can then be used to explain how the rule was
fired or why the question is being asked.

Used with file
Example question entree

Please choose an entree for the meal
;
choose from entree ;
browse file cookbook .

Appendix C - KSL Keyword Glossary 205

flex toolkit

by

KSL Context Formula
Description Arithmetic division operator.
Used with divided
Example if the payload of the lorry divided

by 2 is less than 9 then ...

change / changes

KSL Context Sentence
Description Used within demons and constraints to indicate that

the value of a slot or global variable has changed.
Example demon melt_down

when the temperature changes to T
and ...

check

KSL Context Sentence
Description Used within constraints and watchdogs to indicate

the test that will be carried out.
Used with then, that
Example watchdog account_security

when ...
then check that the user`s access is
above 9

choose

KSL Context Sentence
Description Used within questions to indicate a single-choice or

multiple-choice menu
Used with from, one, some of
Example question wine

Please choose some wines to go with
your meal ;
choose some of chablis, claret,
champagne, plonk .

come

KSL Context Sentence
Description Used in ruleset to select rules using the built-in first-

come first-served rule selection algorithm.
Used with select rule using first, served
Example ruleset timetable

contains all rules ;
select rule using first come first
served .

Appendix C - KSL Keyword Glossary 206

flex toolkit
6

conflict

KSL Context Sentence
Description Used in ruleset to select rules using the built-in

conflict resolution algorithm.
Used with select rule using, resolution
Example ruleset stock_take

contains all rules ;
select rule using conflict resolution.

constraint

KSL Context Sentence
Description Data-driven procedure used to constrain the

possible values for a slot or global variable.
Example constraint maximum_size

when the contents of any jug changes
to X
then check that X is at or below a
jug`s capacity .

contains

KSL Context Sentence
Description Used within a ruleset to define the initial rule

agenda.
Example ruleset water_jugs

contains all rules .

cyclic

KSL Context Sentence
Description Used in ruleset to start the next rule agenda at the

rule following the selected rule.
Used with update ruleset by, rotation of rules
Example ruleset moving_blocks

contains all rules ;
update ruleset by cyclic rotation of
rules .

data

KSL Context Sentence
Description Defines some data initialisation procedures.
Example data start_up_configuration

the contents of jugA are 2
and ...

default

KSL Context Sentence
Description Declares a default value for an attribute of a frame.
Example frame squirrel is a rodent

default tail is { long and bushy }

Appendix C - KSL Keyword Glossary 207

flex toolkit
7

demon

KSL Context Sentence
Description Data-driven procedure which reacts to changes in

the values of slots or global variables.
Example demon spy_contents

when the contents of X changes from Y
to Z
then write(contents(X,Y,Z))
and nl .

demoting

KSL Context Sentence
Description Used in ruleset to demote each selected rule from

the rule agenda.
Used with update ruleset by, each selected rule
Example ruleset spelling_checker

contains all rules ;
update ruleset by demoting each
selected rule .

different

KSL Context Formula
Description Checks that two objects have different values.
Used with from
Example if car`s mileage is different from 0

then ...

divided

KSL Context Formula
Description Arithmetic division operator.
Used with by
Example if the payload of the lorry divided

by 2 is less than 9
then ...

Appendix C - KSL Keyword Glossary 208

flex toolkit

do

see also include and while

KSL Context Sentence
Description Prefix to a directive.
Used with action
Example action jug_update ;

do the contents of the jug := 7.5 and
the position of the jug := upright .

KSL Context Formula
Description An optional prefix to a directive.
Example if ... then do danger_level is red

does

see include.

doing

KSL Context Sentence
Description Used in ruleset to define a set of actions to be

performed prior to forward chaining.
Used with initiate by
Example ruleset start

contains all rules ;
initiate by doing restart .

each

KSL Context Sentence
Description Used in ruleset to remove, promote or demote each

selected rule from the rule agenda.
Used with update ruleset by [removing,

promoting, demoting], selected rule
Example ruleset spelling_checker

contains all rules ;
update ruleset by demoting each
selected rule .

else

KSL Context Object
Description Indicates the alternative object within an IF-THEN-

ELSE construct.
Used with if, then
Example the result is if parameter > 0 then 1

else 0

empty

see nothing / nobody.

Appendix C - KSL Keyword Glossary 209

flex toolkit

end

KSL Context Formula
Description Indicates the end of a loop statement.
Used with for, repeat, while, if
Example for X from -100 to 100

do plot(X)
end for

equal

KSL Context Formula
Description Checks that two objects have the same value.
Used with to
Example if jugA`s contents are equal to 0

then ...

every

see all.

false

KSL Context Formula
Description Tests whether a proposition does not hold.
Used with is
Example if proposition is false

then ...

file

see browse.

first

KSL Context Sentence
Description Used in ruleset to select rules using the built-in first-

come first-served rule selection algorithm.
Used with select rule using, come, served
Example ruleset timetable

contains all rules ;
select rule using first come first
served .

for

KSL Context Formula
Description For loop.
Used with from, to, step, do, end
Example for X from -100 to 100 step 5

do plot(X)
end for

Appendix C - KSL Keyword Glossary 210

flex toolkit

forget

KSL Context Formula
Description Removes assertions from either the positive (facts)

or negative (exceptions) database.
Used with that
Example forget that danger_level(anything)

frame

KSL Context Sentence
Description Declares a new frame, its position in the frame

hierarchy, any default values and any inheritance
links.

Example frame feline is a mammal ;
default tail is { long and furry } ;
inherit meal from carnivore .

from

see inherit, remove or change / changes.

function

KSL Context Sentence
Description Define an evaluable function.
Used with =
Example function factorial(N) =

if N>0 then N*factorial(N-1) else 1 .

greater

KSL Context Formula
Description Checks that the 1st object is greater than the 2nd.
Used with than
Example if jugA`s contents are greater than 0

then ...

group

KSL Context Sentence
Description Defines the membership of a group.
Example group fish

salmon, cod, mullet, tuna, plaice .

Appendix C - KSL Keyword Glossary 211

flex toolkit

if

KSL Context Sentence
Description Used with rules and clauses to discriminate between

the conditions and the directives or conclusion.
Example rule prescribe_lomotil

if complains_of(patient, diarrhoea)
and ...
then ...

KSL Context Object
Description The start of the test within an IF-THEN-ELSE

construct. If the test succeeds the 1st object is
chosen, otherwise the 2nd object is chosen.

Used with then, else
Example the result is if parameter > 0 then 1

else 0

in

see include.

include

KSL Context Formula
Description A directive for extending the current value of a set

with some new objects.
Used with in
Example if ...

then include lemon_sole in the entree
of meal

include / includes

KSL Context Formula
Description Tests whether a set includes some objects.
Example if the staff includes a secretary

then ...

included

KSL Context Formula
Description Tests whether a set includes some objects.
Used with in
Example if a surprise is included in the

contents of the box then ...

inherit

KSL Context Sentence
Description Declares inheritance links for attributes of frames.
Used with from
Example frame feline is a mammal ;

inherit meal from carnivore .

Appendix C - KSL Keyword Glossary 212

flex toolkit

initiate

KSL Context Sentence
Description Used in ruleset to define a set of actions to be

performed prior to forward chaining.
Used with by doing
Example ruleset start

contains all rules ;
initiate by doing restart .

input

KSL Context Sentence
Description Define a question as being keyboard input.
Used with name, number, integer, set
Example question age_of_applicant ;

input integer .

instance

KSL Context Sentence
Description Declares a specific instance of a frame.
Used with is a
Example instance moby_dick is a whale ;

colour is white .

integer

see input

is

KSL Context Formula
Description Checks that two objects have the same value.
Example if the blood`s count is low

then ...

KSL Context Formula
Description An assignment of a value to a slot or global variable.
Example if ...

then the tail of the squirrel is
{ long and bushy }

its

KSL Context Object
Description When used to describe an attribute of a frame, it

refers to another attribute of the same frame.
Example frame root

default weight is its density times
its volume

Appendix C - KSL Keyword Glossary 213

flex toolkit

kind

KSL Context Sentence
Description Used in defining the parents of a frame.
Used with is a, of
Example frame bird is a kind of animal

launch

KSL Context Sentence
Description A data-driven procedure for initialising new

instances of frames.
Example launch female_enrolment

when Person is a new student
and female(Person) then
female_enrolment_questions(Person)
.

less

KSL Context Formula
Description Checks that the 1st object is less than the 2nd.
Used with than
Example if the temperature is less than

january`s average

minus

KSL Context Object
Description Arithmetic operator.
Example if the number of managers minus the

number of clerks > 0 then ...

name

see input

network

KSL Context Sentence
Description Used in ruleset to update the rule agenda update

according to a rule transition network.
Used with update ruleset using rule transition
Example ruleset fault_diagnosis

contains all rules ;
update ruleset using rule transition
network .

Appendix C - KSL Keyword Glossary 214

flex toolkit

new

KSL Context Formula
Description Creates a new instance of a frame, possibly with its

own individual characteristics.
Used with is a
Example if ... then X is a new carrier_bag

nobody / nothing

KSL Context Object
Description The empty set.
Example if shopping_list is nothing then ...

not

KSL Context Sentence
Description Negation (by failure).
Example if not [test1 is true

or test2 is false]
then ...

KSL Context Object
Description Invert the comparison of two objects.
Example if the temperature is not less than

january`s average then ...

number

see input

of

see also `s.

KSL Context Object
Description Relates an attribute to a frame.
Example if the habitat of some animal is land

then ...

one

see choose.

or

KSL Context Formula
Description The disjunction operator for alternative conditions.
Example if the jug`s contents are 0

or the jug`s contents are the jug`s
capacity then ...

KSL Context Object
Description The disjunction operator for alternative objects.

Appendix C - KSL Keyword Glossary 215

flex toolkit

Used with { }
Example if the jug`s contents are { 0 or the

jug`s capacity } then ...

otherwise

KSL Context Sentence
Description Indicates the action to take when an error arises in a

data-driven procedure.
Example watchdog account_security

when the contents of account are
requested
then check the user`s access > 99
otherwise report_illegal_entry .

plus

KSL Context Object
Description Arithmetic operator.
Example if the contents of jug1 plus the

contents of jug2 is above 10 then ...

power

KSL Context Object
Description Arithmetic operator.
Used with to the, of
Example if ...

then its volume is its size to the
power of 3

promoting

KSL Context Sentence
Description Used in ruleset to promote each selected rule from

the rule agenda.
Used with update ruleset by, each selected rule
Example ruleset ordering_rules

contains all rules ;
update ruleset by promoting each
selected rule .

question

KSL Context Sentence
Description Defines the form and content of a set question.
Example question cheeses

Select a cheese after the meal ;
choose some of cheese .

Appendix C - KSL Keyword Glossary 216

flex toolkit
6

relation

KSL Context Sentence
Description Define a relationship between objects.
Used with if
Example relation father(Pop, Child)

if parent(Pop, Child)
and male(Pop) .

remember

KSL Context Formula
Description Record new assertions in either the positive (facts)

or negative (exceptions) database.
Used with that
Example if ...

then remember that danger_level(red)

remove

KSL Context Formula
Description Remove elements from a set.
Used with from
Example remove cod from the entree of meal

removing

KSL Context Sentence
Description Used in ruleset to remove each selected rule from

the rule agenda.
Used with update ruleset by, each selected rule
Example ruleset checking_rules

contains all rules ;
update ruleset by removing each
selected rule .

KSL Context Sentence
Description Used in ruleset to update the rule agenda by

removing any rule whose conditions were
unsatisfied.

Used with update ruleset by, any unsatisfied
rules

Example ruleset state_checker
contains all rules ;
update ruleset by removing any
unsatisfied rules .

Appendix C - KSL Keyword Glossary 217

flex toolkit
7

repeat

KSL Context Formula
Description Repeat-Until loop.
Used with until, end
Example repeat ask question

until valid_answer
end repeat

requested

KSL Context Sentence
Description Used in the definition of a watchdog to indicate the

slot which it is attached to.
Example watchdog account_security

when the balance of account is
requested
then check the user`s access > 99 .

resolution

KSL Context Sentence
Description Used in ruleset to select rules using the built-in

conflict resolution algorithm.
Used with select rule using conflict
Example ruleset stock_take

contains all rules ;
select rule using conflict resolution
with threshold 9 .

rotation

KSL Context Sentence
Description Used in ruleset to start the next rule agenda at the

rule following the selected rule.
Used with update ruleset by cyclic, of rules
Example ruleset moving_blocks

contains all rules ;
update ruleset by cyclic rotation of
rules .

rule

KSL Context Sentence
Description Defines a production rule within the forward

chaining sub-system.
Example rule prescribe_lomotil

if complains(patient, diarrhoea) and
not suffers(patient,liver_complaints)
and not pregnant(patient)
then prescribe(patient, lomotil) .

Appendix C - KSL Keyword Glossary 218

flex toolkit

ruleset

KSL Context Sentence
Description Defines parameters for the forward chaining of a

particular set of rules .
Example ruleset water_jugs

contains all rules ;
select rule using conflict resolution
with threshold 6 ;
update ruleset using rule transition
network .

`s

see also of.

KSL Context Object
Description Used to relate an attribute to a frame.
Example if the cinema`s films includes the

viewer`s film_choice

score

KSL Context Sentence
Description Attaches a score to a production rule.
Example rule empty_jugA

if jugA`s contents are above 0
then jugA`s contents := 0
score jugA`s contents .

select

KSL Context Sentence
Description Used in ruleset to define the rule selection

algorithm.
Used with rule using
Example ruleset stock_take

contains all rules ;
select rule using conflict resolution
with threshold 30 .

selected

KSL Context Sentence
Description Used in ruleset to remove, promote or demote each

selected rule from the rule agenda.
Used with update ruleset by [removing,

promoting, demoting] each, rule
Example ruleset ordering_rules

contains all rules ;
update ruleset by promoting each
selected rule .

Appendix C - KSL Keyword Glossary 219

flex toolkit

served

KSL Context Sentence
Description Used in ruleset to select rules using the built-in first-

come first-served rule selection algorithm.
Used with select rule using first come first
Example ruleset timetable

contains all rules ;
select rule using first come first
served .

set

see input.

some

see any.

somebody / something

see anybody / anything.

step

see for

subtract

KSL Context Formula
Description Arithmetic subtraction.
Used with from
Example if ...

then subtract 1 from running_total

such

KSL Context Object
Description Qualifies a variable with a given condition.
Used with that
Example if prime(X such that [number(X)

and X < 100])
then ...

synonym

KSL Context Sentence
Description Defines a synonym for a frequently occurring term.
Example synonym maximum_number 999999 .

Appendix C - KSL Keyword Glossary 220

flex toolkit

template

KSL Context Sentence
Description Defines the positive and negative forms of a

relation.
Used with ^
Example template ontopof

block ^ is on top of ^ ;
block ^ is not on top of ^ .

terminate

KSL Context Sentence
Description Used in ruleset to define a set of conditions, which,

if fulfilled, terminate forward chaining successfully.
Used with when
Example ruleset heat_kettle

contains all rules ;
terminate when the temperature of the
water is 100 .

than

see greater or less.

that

see such.

the

see also a / an.

KSL Context Object
Description A determiner which is an optional prefix to nouns.
Example if the contents of the jug are above

the capacity of the jug
then ...

their

plural form of its.

Appendix C - KSL Keyword Glossary 221

flex toolkit

then

KSL Context Sentence
Description Indicates the action part of a production rule.
Example rule prescribe_paracetamol

if complains(patient, headache)
then prescribe(patient,paracetamol) .

KSL Context Object
Description Indicates the object to be used within an IF-THEN-

ELSE construct if the test succeeds.
Used with if, else
Example the result is if parameter > 0 then 1

else 0

threshold

KSL Context Sentence
Description Used in ruleset to determine a threshold for the

conflict resolution selection algorithm.
Used with select rule using conflict resolution

with
Example ruleset stock_take

contains all rules ;
select rule using conflict resolution
with threshold 10 .

times

KSL Context Object
Description Arithmetic operator.
Example if the number of customers times 2 is

greater than the number of staff
then ...

to

see according or change / changes.

transition

KSL Context Sentence
Description Used in ruleset to update the rule agenda update

according to a rule transition network.
Used with update ruleset using rule, network
Example ruleset fault_diagnosis

contains all rules ;
update ruleset using rule transition
network .

Appendix C - KSL Keyword Glossary 222

flex toolkit

true

KSL Context Formula
Description Checks that a proposition holds.
Used with is
Example if proposition is true then ...

unsatisfied

KSL Context Sentence
Description Used in ruleset to update the rule agenda by

removing any rule whose conditions were
unsatisfied.

Used with update ruleset by removing any, rules
Example ruleset state_checker

contains all rules ;
update ruleset by removing any
unsatisfied rules .

until

see repeat.

update

KSL Context Sentence
Description Used in ruleset to define the rule agenda update

algorithm.
Used with ruleset
Example ruleset fault_diagnosis

contains all rules ;
update ruleset using rule transition
network .

using

KSL Context Sentence
Description Used in ruleset to define the rule selection

algorithm.
Used with select rule
Example ruleset stock_take

contains all rules ;
select rule using conflict resolution
.

KSL Context Sentence
Description Used in ruleset to define the rule agenda update

algorithm.
Used with update ruleset
Example ruleset fault_diagnosis

contains all rules ;
update ruleset using rule transition
network .

Appendix C - KSL Keyword Glossary 223

flex toolkit

watchdog

KSL Context Sentence
Description Defines a check on a slot before access is allowed.
Example watchdog salary_security

when the salary of employee is
requested
then check the user`s job is
supervisor .

when

KSL Context Sentence
Description Indicates the slot to which a data-driven procedure

is to be attached.
Example demon spy_all

when the Attribute of a Frame changes
from X to Y then
write(update(Attribute,Frame,X,Y))
and nl .

where

see such.

while

KSL Context Formula
Description While loop.
Used with do, end
Example while invalid_answer

do ask question
end while

whose

KSL Context Object
Description Identifies a frame with particular characteristics.
Used with is, are
Example if ... then B is a new bag

whose contents are empty .

Appendix C - KSL Keyword Glossary 224

flex toolkit

'{' , '}'

KSL Context Object
Description Set constructors.
Example { X : manager(X) } includes { john or

mary }

'[' , ']'

KSL Context Formula
Description Collect together conditions into a single formula.
Example if test1

and [test2 or test3]
and not [test4 and test5]
then ...

$

KSL Context Object / Formula
Description Indicates that the following object, or all of the

objects in the following formula, should not be
dereferenced during evaluation.

Example if ...
then write($ temperature)
and write(' is ')
and write(temperature)
and nl

:

see such.

:=

same as becomes

=

same as equal.

\=

same as different from.

<

same as less.

=<

same as equal or less than.

Appendix C - KSL Keyword Glossary 225

flex toolkit

>

same as greater.

>=

same as greater or equal to.

+

same as plus.

-

same as minus.

*

same as times.

/

same as divided by.

^

see power or template.

Appendix D - Dealing with Uncertainty 226

flex toolkit
6

Appendix D - Dealing with Uncertainty

This document aims to serve as a basic introduction to the various
techniques that Flex now offers to support uncertainty. For a more detailed
explanation, you are referred to:

“Knowledge-Based Systems for Engineers and Scientists“

(Hopgood, CRC Press, ISBN: 0-8493-8616-0)

Traditional expert systems work on the basis that everything is either true or
false, and that any rule whose conditions are satisfiable is useable, i.e. its
conclusion(s) are true. This is rather simplistic and can lead to quite brittle
expert systems. Flex now offers support for where the domain knowledge is
not so clearcut.

Given a rule:

rule1: if A & B then C

there are 3 potential areas for uncertainty.

- Uncertainty in data (how true are A and B)

- Uncertainty in the rule (how often does A and B imply C)

- Impreciseness in general

The first 2 can be handled using probabilities and the third using fuzzy logic.

Uncertainty in Data

Combining Probabilities

A probabilistic rule in flex can look like a production rule:

uncertainty_rule r33
 if the temperature is high
 and the water_level is not low
 then the pressure is high .

Later on we shall see that this is equivalent to:

Appendix D - Dealing with Uncertainty 227

flex toolkit
7

uncertainty_rule r33
 if the temperature is high (affirms 1.00 ; denies 1.00)
 and the water_level is not low (affirms 1.00 ; denies 1.00)
 then the pressure is high .

with a prior probablity for ‘pressure is high’ of 0.5

Probabilistic rules in flex can be invoked via:

relation simple_boiler_probability(P)
 if trace propagation
 and reset all probability values
 and the probability that the water_level is low = 0.03
 and the probability that the temperature is high = 0.98
 and propagate simple_boiler_control probability rules
 and the probability that the pressure is high = P .

Bayes’ theorem states:

P(H/E) = P(H) * P(E/H) / P(E)

This states the probability of a hypothesis given some evidence in terms of
the probablity of the evidence given the hypothesis. This is useful as it is
generally easier to estimate the probablity of evidence given a hypothesis
than the reverse.

Affirms and denies

We can attach weights to update our confidence in a hypothesis given new
evidence. The larger the affirmed weight, the more confidant we can be in
an hypothesis.

A Bayesian rule in flex looks like:

uncertainty_rule r44
 if the temperature is high (affirms 18.00 ; denies 0.11)
 and the water_level is not low (affirms 1.90 ; denies 0.10)
 then the pressure is high .

You can invoke the probability engine with something like:

relation boiler_prob(P)
 if trace propagation
 and reset all probability values
 and the probability that the water_level is low = 0
 and the probability that the temperature is high = 1
 and the probability that the pressure is high = 0.099
 and propagate boiler_control probability rules

Appendix D - Dealing with Uncertainty 228

flex toolkit

 and the probability that the release_valve is need_cleaning = P .

An answer, such as, P = 0.69, indicates that there is a probablity of 0.69
that the valve needs cleaning.

Advantages of Bayesian updating are:

1) technique is based on a proven statistical theorem

2) likelyhood is expressed as a propability (or odd)

3) weightings are based upon the probality of evidence

Disadvantages of Bayesian updating are:

1) the prior probability of an assertion must be known or estimated

2) dependant probabilities must be measured or estimated

3) the probability value tells us nothing about its accuracy

4) adding new rules often requires alterations to prior probablities
and weightings in other rules

Appendix D - Dealing with Uncertainty 229

flex toolkit

Odds and Probability

For the purpose of updating probabilities in a rule-based system, it is often
more convenient to deal with the odds of an event arising rather than the
probability. The odds of an hypothesis, O(H), are related to its probability,
P(H), by the following relations.

O(H) = P(H) / P(~H) = P(H) / (1-P(H))

and

P(H) = O(H) / (O(H)+1)

Thus a hypothesis with a probability of 0.2 (1 chance in 5) has odds of 0.25
(or “4 to 1” against).

Similarly, a hypothesis with a probability of 0.8 (4 in 5 chance) has odds of
4 (or “4 to 1” on).

If you’ rather use odds than probabilities for the above example, then you
can have the following:

relation boiler_odds(O)
 if trace propagation
 and reset all odds values
 and the odds that the water_level is low = 0
 and the odds that the temperature is high = 65535
 and the odds that the pressure is high = 0.110
 and propagate boiler_control odds rules
 and the odds that the release_valve is need_cleaning = O .

An answer, such as, O = 2.18, indicates that the odds that the valve needs
cleaning are 2.18.

Evidence based probabilities

The standard formula for updating the odds of a hypothesis, H, given that
evidence, E, is observed is:

O(H/E) = A * O(H)

where O(H/E) is the odds of H given E, and A is the affirms weigth of E.
The definition of A is:

A = P(E/H) / P(E/~H)

This is also sometimes referred to as the ‘Likelihood Ratio’ and is the ratio
of probabilities that the evidence is there when the hypothesis is true to
when the hypothesis is false; i.e. given the evidence exists, how likely is it

Appendix D - Dealing with Uncertainty 230

flex toolkit

that the hypothesis is true.

Absence of Evidence

The absence of evidence is different from not knowing if the evidence is
present or not, and can be used to reduce the probability of a hypothesis.
The standard formula for updating the odds of a hypothesis, H, given that
evidence, E, is absent is:

O(H/~E) = D * O(H)

where O(H/~E) is the odds of H given the absence of E, and D is the denies
weigth of E. The definition of D is:

D = P(~E/H) / P(~E/~H)

or

D = (1 - P(E/H)) / (1 - P(E/~H))

This is the ratio of probabilities that the evidence is not there when the
hypothesis is true to when the hypothesis is false; i.e. given the evidence is
absent, how likely is is that the hypothesis is true.

Uncertain Evidence

To refelect uncertainty in E, we scale both A and D to A’ and D’ respectively
using linear interpolation. The expressions used to calculate interpolated
values are:

A’ = [2(A-1) * P(E)] + 2 - A

D’ = [2(1-D) * P(E)] + D

While P(E) is greater than 0.5 we use the affirms weigth, and when P(E) is
less than 0.5, we use the denies weigth.

Appendix D - Dealing with Uncertainty 231

flex toolkit

Certainty Theory

Certainty theory, as used in MYCIN, represents an attempt to overcome
some of the shortcomings of Bayesian updating. Instead of using
probablities, each assertion has a certainty value between 1 and -1
associated with it, as do rules.

The updating procedure for certainty values consists of adding a +ve or -ve
value to the current certainty of a hypothesis. This contrasts with Bayesian
updating where the odds of a hypothesis are always multiplied by the
appropriate weighting. The basic formulae are:

CF’ = CF’ x C(E)

a) if C(H) >= 0 and CF’ >= 0

C(H/E) = C(H) + [CF’ x (1 - C(H))]

b) if C(H) <= 0 and CF’ <= 0

C(H/E) = C(H) + [CF’ x (1 + C(H))]

c) if C(H) and CF’ have opposite signs

C(H/E) = C(H) + CF’/ (1 - min(|C(H)|, |CF|))

where:

C(H/E) is the certainty of H updated in the light of E

C(H) is the initial certainty of H

uncertainty_rule r41
 if the release_valve is stuck
 then the release_valve is need_cleaning
 with certainty factor 1.0 .

relation boiler_cf(CF1, CF2, CF3)
 if trace propagation
 and reset all certainty_factor values
 and the certainty_factor that the water_level is low = -1
 and the certainty_factor that the warning_light is on = 1
 and propagate boiler_control certainty_factor rules
 and the certainty_factor that the release_valve is stuck = CF2
 and the certainty_factor that the release_valve is need_cleaning = CF3

Index 232

flex toolkit

— GENERAL INDEX —
—A—

a, 61

above, 58

Accessing slots, 36, 82, 120

according to, 59, 88

action, 46, 76

formal grammar of, 171

representation, 99

add, 60

add_value/2, 103

Agenda, 27, 29, 104, 111, 113, 131

all, 53, 71

all_rules/1, 103

always, 169, 186

an, 68

ancestor/2, 104

and, 53, 59, 63, 67

Animal kingdom, 7, 151

Anonymous variable, 50, 55

another, 61

Answer, 39,40, 42, 87

formal grammar of, 172

answer to, 42

answer/2, 104

any, 52, 54

anybody, 51, 55

anything, 51, 55

are, 57, 67

Argument interpretation, 93

Arguments in templates, 90

Arithmetic, 55, 60

formal grammar of, 184

ask, 42, 62, 85

ask/1, 42, 104

Assertions, 62

Assignment, 60, 130

at, 58

atn, 112

atn/3, 104

Atoms, 49

Attached procedures, 31

Attribute, 5, 13, 45, 51

see also Slot

Attribute chaining, 11, 52

—B—

back, 111

back/3, 105

Backward Chaining, 2, 20, 44

because, 41, 69, 84

become, 60

below, 58

Index 233

flex toolkit

Birds, 155

Brackets, 53, 55, 208

Breadth first search, 14

browse, 23, 127

—C—

Calling flex, 39, 76

Carrier bags, 148

catchall, 41

Chaining attributes, 11, 52

changes, 80

check, 39, 60, 80, 82

choose, 38, 84

Clause, 77

Closed world assumption, 19

come, 72

Command, 83

formal grammar of, 171

see also Directive

Comments, 49

Comparison, 58, 105

formal grammar of, 175

comparison/3, 105

comparison/4, 105

Compiling KSL, 45, 48

Complex Variants, 52

Compound terms, 53

Condition, 57

formal grammar of, 174

Conditional term, 54

Conflict resolution, 28, 73, 106, 162

Conjunctions, 59

Constraint, 31, 33, 80, 123

formal grammar of, 167

representation, 97

constraint/8, 97

contains, 71

Context switching, 60, 85

Control statement, 63

For, 65

formal grammar of, 178

If-Then-Else, 63

Repeat-Until, 64

While-Do, 64

Counter, 65

crss/3, 106

crss/4, 106

Current value, 5, 6, 120, 129

access, 36, 82

existence, 58

incrementing and decrementing, 61

removal of, 137

update, 33, 35

current_value/3, 95

Index 234

flex toolkit

cycle, 111

cycle/3, 106

cyclic rotation, 74, 106

—D—

Data, 82, 83, 124

formal grammar of, 172

representation, 100

data/2, 100

Database, 62

Data-driven programming, 31

constraint, 33, 80

demon, 35, 81

launch, 32, 79

watchdog, 36, 82

Data-driven reasoning, 19

DCG for KSL, 163

Debugging, 130, 139

Decrementing, 60, 140

default, 67

Default value, 5, 6, 67, 116, 124

re-instatement of, 137

universal, 16

default_value/3, 95

Definite Clause Grammar, 163

Demon, 31, 35, 81, 116, 124

formal grammar of, 167

representation, 96

demon/7, 96

demoting, 74

Depth first search, 14

dereference/2, 106

Dereferencing, 47, 56, 93, 94, 106

suppression of, 56, 78

descendant/2, 107

Determiner, 51, 205

different, 58

Directive, 60, 76, 83

formal grammar of, 177

disable_rules/1, 107

Disjunctions, 59

Displaying results, 39, 46

disprove/1, 107

divided, 55

do, 64, 65, 76, 82

Do statement, 83

doing, 71

—E—

each, 53, 74

Effort of search, 15, 115

else, 54, 63, 78

empty, 55

Empty set, 55

Index 235

flex toolkit

enable_rules/0, 107

enable_rules/1, 108

end, 63, 64

Engine, 19, 23

termination of, 112

equal, 57

Equality, 57, 108

equality/2, 108

every, 53

every_instance/2, 108

Exceptions, 62, 110, 117, 132

Existence, 58

Expert systems, 1

explain/1, 108

Explanation, 23, 108

question, 41, 86

rule, 23

Explicit set, 52

Expression, 55, 56

formal grammar of, 184

—F—

Facts, 62, 110, 117, 132

fail, 75

fail/0, 111

false, 180, 193

fcfs/3, 109

Fibonacci sequence, 77

Fields, 4

file, 23

fire_rule/1, 109

First come first served, 28, 72, 109

Fish, 156

fixed, 111

fixed/3, 109

flatten_group/2, 109

flex Predicate Index, 220

flex programs, 44, 142

flex_name/1, 109

for, 65

For loops, 65

forget, 62

forget_exception/1, 110

forget_fact/1, 110

Formal Grammar, 163

Formulae, 57

formal grammar of, 174

Forward Chaining, 19, 23, 46, 110

termination of, 112

forward_chain/5, 110

forward_chain/6, 112

forward_chain/7, 112

Frame, 4, 7, 45, 66, 125

ancestor, 104

Index 236

flex toolkit
6

attribute of, 51

child, 7

create, 125

descendant, 107

existence, 117

formal grammar of, 164

global, 12

hierarchy, 7, 13

instance of, 8, 54, 125

parent, 7, 67

representation, 95

root, 16, 114

frame/2, 95

from, 58, 60, 65, 67, 80

front, 111

front/3, 113

Function, 78

formal grammar of, 171

representation, 100

function/3, 100

Fuzzy ordering, 88

—G—

gensym/2, 148

global, 12

Global variable, 12, 39, 51

answers, 84

assignment to, 60

Glossary of keywords, 185

Goal-driven reasoning, 20

Grammar of KSL, 163

greater, 58

Group, 39, 59, 85, 88, 118, 125

formal grammar of, 173

representation, 101

group/2, 101

—H—

Hierarchy of frames, 7, 13, 66

—I—

identify/3, 157

if, 54, 60, 63, 69, 78

Implicit set, 53

include, 59, 61

inclusion/2, 113

Incrementing, 60

Index, 65

Inequality, 57, 58

Inference engine, 1, 20

inherit, 10, 67

formal grammar of, 166

inherit/3, 113

inherit/4, 114

Inheritance, 7, 13, 67, 113, 114, 119,

Index 237

flex toolkit
7

122

link, 9, 126

logic, 18

multiple, 8, 16, 115

negative, 10

plurality of, 16

singular, 8, 16, 115

specialised, 9

inheritance/0, 114

inheritance/4, 114

Initial rule agenda, 27, 71

Initialisation, 71, 83, 115, 124, 137

data, 82

initialise/0, 115

Initialising

restart/0, 47

initiate, 71

init_gensym/1, 149

input, 40, 86

Instance, 8, 52, 54, 68, 79, 125, 138

create, 125

existence, 118

formal grammar of, 165

new, 61, 79

representation, 95

instance/2, 95

integer, 86

Interpretation

actions, 99

arguments, 93

constraints, 97

data, 100

demons, 96

frame, 95

functions, 100

group, 101

instances, 95

launches, 96

objects, 92

questions, 101

relations, 99

rules, 98

sentences, 95

synonyms, 101

templates, 102

watchdogs, 98

invoke ruleset, 46, 70, 149

is, 57, 61, 67

isa_constraint/8, 115

isa_data/2, 116

isa_default/3, 116

isa_demon/7, 116

isa_disabled_rule/1, 117

Index 238

flex toolkit

isa_exception/1, 117

isa_fact/1, 117

isa_frame/2, 117

isa_function/3, 118

isa_group/2, 118

isa_instance/2, 118

isa_launch/5, 118

isa_link/3, 119

isa_logic/1, 119

isa_question/4, 119

isa_relation/2, 120

isa_rule/5, 120

isa_slot/3, 120

isa_synonym/2, 121

isa_template/3, 121

isa_value/2, 121

isa_watchdog/6, 122

is_known/1, 122

its, 197

—K—

Keyboard input, 40, 86

Keyword glossary, 185

kind, 67

Knowledge Specification Language, 4,
49

known, 58, 122

KSL, 4, 49

Components, 48

Files, 48

Formal Grammar, 163

Glossary, 185

Interpretation of, 93

Keyword Index, 218

Objects, 51

Programs, 44

Sentences, 44

Terms, 49

—L—

Language Grammar, 163

Launch, 31, 79, 126

formal grammar of, 166

representation, 96

launch, 32, 79

launch/5, 96

less, 58

link/3, 95

Linking frames, 7

List, 52, 59, 113

Logic, 18, 119, 126

lookup/3, 122

lookup/4, 123

Loop, 64, 65

—M—

Mammals, 153

Index 239

flex toolkit

Membership, 59, 108, 113, 138

Menu selection, 38, 84

Method, 31

minus, 55

misfire/0, 111

misfire/1, 123

misfires, 70, 75

Mnemonic, 89

Multiple inheritance, 8

Multiple selection menu, 84, 127

—N—

Name, 50, 86

Negation, 107

Negative inheritance, 10

network, 74

new, 61, 79

new_constraint/8, 123

new_data/2, 124

new_default/3, 124

new_demon/7, 124

new_frame/2, 125

new_function/3, 125

new_group/2, 125

new_instance/2, 125

new_launch/5, 126

new_link/3, 126

new_logic/1, 18, 126

new_question/4, 127

new_relation/2, 128

new_rule/5, 128

new_slot/3, 129

new_synonym/2, 129

new_template/3, 129

new_value/2, 130

new_watchdog/6, 130

nobody, 55

nospy_chain/0, 130

nospy_fact/1, 131

nospy_rule/1, 131

nospy_slot/2, 131

not, 57, 58, 59, 67

nothing, 55

number, 86

Numbers, 49

—O—

Objects, 51, 180

formal grammar of, 180

representation, 92

of, 51

once, 111

once/3, 131

Operator, 55, 59

or, 53, 58, 59, 93

Index 240

flex toolkit

Ordering, 58, 59, 88, 105

otherwise, 80, 82

Output, 46, 56

Overriding inheritance, 9

—P—

Pack shopping, 148

Parameters in templates, 90

Parentheses, 53, 55

Plurality of inheritance, 16, 115

plus, 55

possibles, 111

possibles/3, 131

power, 55

Predicate Index, 220

Procedure, 59

formal grammar of, 179

Production rule

see Rule

Programs, 44

Prolog calls, 59

Prolog lists, 53

Prolog programs, 44, 48, 77

Prolog queries, 76

Prolog structures, 92

promoting, 74

Proof, 132

prove/1, 17, 132

Punctuation, 49

—Q—

Question, 38, 84, 127

answer, 54, 104

ask, 62, 104

constrained, 40

customized, 40

default, 41

existence, 119

explanation, 41, 86

formal grammar of, 172

group, 39

input, 40

invocation, 42

menu, 38, 84

representation, 101

storing answer, 39

user-defined, 87

question/4, 101

—R—

Records, 4

Relation, 21, 77

formal grammar of, 171

representation, 99

relation/2, 99

Relative comparison, 59

Index 241

flex toolkit

remember, 62

remember_exception/1, 132

remember_fact/1, 132

remove, 61

remove_constraints/0, 132

remove_constraints/2, 133

remove_data/0, 133

remove_defaults/0, 133

remove_defaults/1, 133

remove_demons/0, 133

remove_demons/2, 133

remove_exceptions/0, 133

remove_facts/0, 134

remove_frame/1, 134

remove_frames/0, 134

remove_function/1, 134

remove_functions/0, 134

remove_groups/0, 134

remove_instance/1, 64, 134

remove_instances/0, 134

remove_instances/1, 135

remove_launches/0, 135

remove_launches/1, 135

remove_links/0, 135

remove_links/1, 135

remove_logic/1, 135

remove_logics/0, 136

remove_questions/0, 136

remove_relation/2, 136

remove_relations/0, 136

remove_rules/0, 136

remove_slots/0, 136

remove_slots/1, 136

remove_synonyms/0, 136

remove_templates/0, 136

remove_templates/1, 137

remove_watchdogs/0, 137

remove_watchdogs/2, 137

removing, 74

Repeat-Until, 64

Replacements, 89

Representation, 92

requested, 82

Reserved words, 185

resolution, 73

restart/0, 47, 82, 137

Retract, 62

Robbie the Robot, 142

root, 16, 114

Root first/last search, 114

Rule, 19, 21, 22, 46, 69, 128

agenda, 27, 71, 74

all rules, 103

Index 242

flex toolkit

create, 128

disabling of, 107

enabling of, 108

existence, 120

explanation of, 23, 108

firing of, 109

formal grammar of, 169

misfire, 75, 110, 123

representation, 98

selection, 27, 72, 110

triggering of, 141

weighting of, 22

Rule transition network, 74, 161

rule/5, 98

Ruleset, 26, 46, 70, 88, 145

formal grammar of, 169

Running rules, 70

Run-time interpretation, 92

run_data/0, 137

run_data/1, 137

—S—

score, 69

Scoring of rules, 22, 28, 128, 160

Search, 114

breadth first, 14, 114

depth first, 14, 114

effort, 15

frame hierarchy, 14

select, 72

selected, 74

Selecting a rule, 27, 72, 109, 110

conflict resolution, 28

first come first served, 27

threshold values, 29

Self reference, 54

served, 72

Sentences, 44, 66

formal grammar of, 164

Set, 52, 55, 59, 86

formal grammar of, 181

inclusion, 59, 61, 113

Single inheritance, 8

Single selection menu, 84, 127

Slot, 4, 13, 51

access, 36, 82, 120, 121, 122

assignment, 60

create, 6, 129

existence, 120

representation, 92

update, 6, 33, 35, 80, 81, 123, 124

some, 52, 54

somebody, 51, 55

something, 51, 55

Index 243

flex toolkit

some_instance/2, 138

spied_chain/0, 138

spied_fact/1, 138

spied_rule/1, 138

spied_slot/2, 139

Spypoints, 130, 139

spy_chain/0, 139, 162

spy_fact/1, 139

spy_rule/1, 139

spy_slot/2, 140

Start Forward Chaining, 46

step, 65

Strings, 50

Structure representation, 92

subtract, 60

sub_value/2, 140

such that, 40, 87

Suppressing inheritance, 10

Synonym, 89, 129

formal grammar of, 173

representation, 101

synonym/2, 101

Syntax of KSL, 163

—T—

Taxonomy, 151

Template, 90, 129, 150

formal grammar of, 174

representation, 102

template/3, 102

terminate, 72

Termination, 72, 111

Terms of KSL, 49, 53

formal grammar of, 182

than, 58

that, 39, 60

the, 51

their, 205

then, 54, 63, 69

threshold, 73

Threshold values, 29

times, 55

to, 57, 58, 65, 80

Tokens of KSL, 49

Tracing, 130, 139

Transition network, 104, 74, 161

trigger_rule/1, 141

true, 75, 111

Typographical ordering, 58

—U—

Universal default, 16

unknown, 58

unsatisfied, 74

update, 74

Index 244

flex toolkit

Updating agenda, 29, 74

User-defined questions, 87

using, 72

—V—

Validity check

see Data-driven programming

Value, 50, 60

Variable, 12, 50, 55

Variant, 51

formal grammar of, 180

—W—

Watchdog, 31, 36, 82, 130

formal grammar of, 168

representation, 98

watchdog/6, 98

Water containers, 158

Weighting of rules, 22, 28

when, 72, 75, 79, 80

where, 78

while, 64

whose, 53, 54, 61

Workspace, 115

Index 245

flex toolkit

— KSL KEYWORDS INDEX —
See also Appendix C - KSL Keyword Glossary

a, 61

above, 58

according to, 59, 88

action, 76

add, 60

all, 53

all rules, 71

always, 169, 186

an, 68

and, 53, 59, 63, 67

another, 61

answer, 40, 54, 87

any, 52, 54, 74

anybody, 51, 55

anything, 51, 55

are, 57, 67

ask, 39, 42, 62, 85

at, 58

because, 41, 69, 84, 86

become, 60

below, 58

browse, 41

changes, 80, 81

check, 39, 60, 80, 82

choose, 38, 84

come, 72

conflict, 73

constraint, 80

contains, 71

cyclic rotation, 74

data, 82

default, 67

demon, 81

demoting, 74

different, 58

divided, 55

do, 59, 64, 65, 75, 76, 82, 83

does, 59

doing, 71

each, 53, 74

else, 54, 63, 78

empty, 55

end, 63, 64

equal, 57

every, 53

Index 246

flex toolkit
6

false, 180, 193

first, 72

for, 65

forget, 62

frame, 67

from, 58, 60, 61, 65, 67, 80, 84

function, 78

greater, 58

group, 39, 88

if, 54, 63, 69, 77, 78

in, 61

include, 59, 61

inherit, 10, 67

initiate by doing, 71

input, 40, 86

instance, 52, 54, 68, 79

integer, 86

invoke, 46, 70, 149

is, 57, 61, 67, 79

its, 54, 197

kind of, 67

known, 58

launch, 32, 79

less, 58

minus, 55

misfires, 70, 75

name, 86

network, 74

new, 61, 79

nobody, 55

not, 57, 58, 59, 67

nothing, 55

number, 86

of, 38, 51

one, 38

or, 53, 58, 59

otherwise, 80, 82

plus, 55

power, 55

promoting, 74

question, 38, 84

Index 247

flex toolkit
7

relation, 77

remember, 62

remove, 61

removing, 74

repeat, 64

requested, 82

resolution, 73

rotation, 74

rule, 69

rule transition, 74

ruleset, 70

score, 69

select rule, 70

selected, 74

served, 72

set, 86

some, 39, 52, 54

somebody, 51, 55

something, 51, 55

step, 65

subtract, 60

such that, 40, 54, 86, 87

synonym, 89

template, 90

terminate, 72

than, 58

that, 39, 60, 62

the, 51

their, 54, 205

then, 54, 63, 69, 78

threshold, 73

times, 55

to, 54, 57, 58, 60, 65, 80

transition, 74

unknown, 58

unsatisfied, 74

update, 70, 74

using, 70, 72

watchdog, 82

when, 70, 72, 75, 79, 80, 81, 82

where, 78

while, 64

whose, 53, 54, 61

with, 73

Index 248

flex toolkit

—flex PREDICATES INDEX —
Listed by category

Constraints
isa_constraint/8, 115

new_constraint/8, 123

remove_constraints/0, 132

remove_constraints/2, 133

Data

isa_data/2, 116

new_data/2, 124

remove_data/0, 133

restart/0, 137

run_data/0, 137

run_data/1, 137

Demons

isa_demon/7, 116

new_demon/7, 124

remove_demons/0, 133

remove_demons/2, 133

Facts

disprove/1, 107

forget_exception/1, 110

forget_fact/1, 110

isa_exception/1, 117

isa_fact/1, 117

nospy_fact/1, 131

prove/1, 132

remember_exception/1, 132

remember_fact/1, 132

remove_exceptions/0, 133

remove_facts/0, 134

spied_fact/1, 138

spy_fact/1, 139

Forward chaining
atn/3, 104

back/3, 105

crss/3, 106

crss/4, 106

cycle/3, 106

fcfs/3, 109

fire_rule/1, 109

fixed/3, 109

forward_chain/5, 110

forward_chain/6, 112

forward_chain/7, 112

front/3, 113

misfire/1, 123

nospy_chain/0, 130

Index 249

flex toolkit

once/3, 131

possibles/3, 131

spied_chain/0, 138

spy_chain/0, 139

Frames
ancestor/2, 104

descendant/2, 107

isa_frame/2, 117

new_default/3, 124

new_frame/2, 125

remove_defaults/0, 133

remove_defaults/1, 133

remove_frame/1, 134

remove_frames/0, 134

Functions
isa_function/3, 118

new_function/3, 125

remove_function/1, 134

remove_functions/0, 134

General
comparison/3, 105

comparison/4, 105

dereference/2, 106

equality/2, 108

flatten_group/2, 109

flex_name/1, 109

Groups
comparison/4, 105

every_instance/2, 108

flatten_group/2, 109

inclusion/2, 113

isa_group/2, 118

new_group/2, 125

remove_groups/0, 134

some_instance/2, 138

Inheritance
ancestor/2, 104

descendant/2, 107

inherit/3, 113

inherit/4, 114

inheritance/0, 114

inheritance/4, 114

isa_link/3, 119

new_link/3, 126

remove_links/0, 135

remove_links/1, 135

Initialisation
initialise/0, 115

restart/0, 137

Index 250

flex toolkit

run_data/0, 137

run_data/1, 137

Instances
every_instance/2, 108

isa_instance/2, 118

new_instance/2, 125

remove_instance/1, 134

remove_instances/0, 134

remove_instances/1, 135

some_instance/2, 138

Launches
isa_launch/5, 118

new_launch/5, 126

remove_launches/0, 135

remove_launches/1, 135

Logic
isa_logic/1, 119

new_logic/1, 126

remove_logic/1, 135

remove_logics/0, 136

Questions
answer/2, 104

ask/1, 104

isa_question/4, 119

new_question/4, 127

remove_questions/0, 136

Relations
isa_relation/2, 120

new_relation/2, 128

remove_relation/2, 136

remove_relations/0, 136

Rules
all_rules/1, 103

disable_rules/1, 107

enable_rules/0, 107

enable_rules/1, 108

explain/1, 108

fire_rule/1, 109

isa_disabled_rule/1, 117

isa_rule/5, 120

new_rule/5, 128

nospy_rule/1, 131

remove_rules/0, 136

spied_rule/1, 138

spy_rule/1, 139

trigger_rule/1, 141

Slots
add_value/2, 103

isa_default/3, 116

Index 251

flex toolkit

isa_slot/3, 120

isa_value/2, 121

is_known/1, 122

lookup/3, 122

lookup/4, 123

new_default/3, 124

new_slot/3, 129

new_value/2, 130

nospy_slot/2, 131

remove_defaults/0, 133

remove_defaults/1, 133

remove_slots/0, 136

remove_slots/1, 136

spied_slot/2, 139

spy_slot/2, 140

sub_value/2, 140

Synonyms
isa_synonym/2, 121

new_synonym/2, 129

remove_synonyms/0, 136

Templates
isa_template/3, 121

new_template/3, 129

remove_templates/0, 136

remove_templates/1, 137

Watchdogs
isa_watchdog/6, 122

new_watchdog/6, 130

remove_watchdogs/0, 137

remove_watchdogs/2, 137

	Contents
	1. Introduction
	What is flex ?
	What are expert systems?
	Forward Chaining
	Backward Chaining
	Search
	Frames and Inheritance

	Questions and Answers
	Explanations
	Data-driven Programming
	Knowledge Specification Language

	2. Frames and Inheritance
	What is a Frame ?
	Linking Frames
	Creating an Instance of a Frame
	Overriding Inheritance

	Attribute Chaining
	Global Variables
	Inheriting Values through the Frame Hierarchy
	Depth-First versus Breadth-First Search ?
	How Far Should the Search Go ?
	Universal Defaults
	Singular Versus Multiple Inheritance ?

	Frame Relationships

	3. Forward Chaining and Rules
	Rules and Relations
	Weighting of Rules
	Attaching Explanations to Rules

	The Forward Chaining Engine
	A Simple Model
	The Implemented Model

	Ruleset
	The Rule Agenda
	Setting The Initial Rule Agenda
	Selecting Rules
	Updating the Agenda

	4. Data-Driven Programming
	Data-Driven Procedures
	Launches
	Constraining the Values of Slots
	Attaching Demons to Slot Updates
	Restricting the Access to Slots

	5. Questions and Answers
	Defining Questions
	Menu Selection
	Storing Answers
	Keyboard Input
	Constrained Input
	Customized Input
	Default Questions
	Explaining Questions
	Invoking Questions

	6. The Anatomy of a flex Program
	
	A Simple flex Program
	Extending the Program
	flex and Prolog
	Components of the KSL

	7. The KSL
	KSL Terms
	KSL Objects
	Arithmetic Expressions
	Dereferencing

	KSL Formulae
	
	Conditions
	Directives

	KSL Control Structures
	If-Then-Else
	Repeat-Until Loops
	While-Do Loops
	For Loops
	Extended For Loops

	KSL Sentences
	
	Frames
	Instances
	Rules
	Rulesets
	Actions
	Relations
	Functions
	Launches
	Constraints
	Demons
	Watchdogs
	Data
	Do Statements
	Questions
	Groups
	Synonyms
	Templates

	8. Run-Time Interpretation of KSL
	Representation of KSL Objects
	Interpretation of KSL Sentences
	Dereferencing of KSL Objects
	Representation of KSL Sentences

	9. flex Toolkit Predicates
	
	
	add_value(+Slot,+Term)
	all_rules(-Names)
	ancestor(+Frame,-Ancestor)
	answer(+Name,-Value)
	ask(+Name)
	atn(+Name,+Names,-Newnames)
	back(+Name,+Names,-Newnames)
	comparison(?Relation,+Term1,+Term2)
	comparison(?Relation,+Term1,+Term2,+Group)
	crss(+Names,-Name,-Action)
	crss(+Names,-Name,-Action,+Threshold)
	crss(+Names,-Name,+FiringMechanism,-If,-Then,-Vars)
	crss(+Names,-Name,+FiringMechanism,-If,-Then,-Vars,+Threshold)
	cycle(+Name,+Names,-Newnames)
	dereference(+Term,-Value)
	descendant(+Frame,-Descendant)
	disable_rules(+Names)
	disprove(+Goal)
	enable_rules
	enable_rules(+Names)
	equality(+Term1,+Term2)
	every_instance(+Name,-Elements)
	explain(+Rules)
	fcfs(+Names,-Name,-Action)
	fcfs(+Names, -Name, +FiringMechanism, -If, -Then, -Vars)
	fire_rule(+Name)
	fixed(+Name,+Names,-Newnames)
	flatten_group(+Name,-Elements)
	flex_name(?Name)
	forget_exception(+Term)
	forget_fact(+Term)
	forward_chain(+Selection,+Misfire,+Termination,+Update,+Agenda)
	forward_chain(+Selection,+Misfire,+Termination,+Update,+Agenda,-Sequence)
	forward_chain(+Selection,+Misfire,+Termn,+Update,+Agenda,-Sequence,-Result)
	front(+Name,+Names,-Newnames)
	inclusion(+List,+Term)
	inherit(+Attribute,+Frame,-Value)
	inherit(+Attribute,+Frame,-Value,-Ancestor)
	inheritance
	inheritance(?Search,?Root,?Plurality,?Effort)
	initialise
	isa_constraint(?Name,?Attribute,?Frame,-Old,-New,-Context,-Check,-Action)
	isa_data(?Name,-Action)
	isa_default(?Attribute,?Frame,-Value)
	isa_demon(?Name,?Attribute,?Frame,-Old,-New,-Context,-Action)
	isa_disabled_rule(?Name)
	isa_exception(?Term)
	isa_fact(?Term)
	isa_frame(?Name,?Parents)
	isa_function(?Name, ?Arguments, ?Value)
	isa_group(?Name,-Elements)
	isa_instance(?Instance,?Frame)
	isa_launch(?Name,?Instance,?Frame,-Context,-Action)
	isa_link(?Attribute,?Frame,-Parents)
	isa_logic(?Logic)
	isa_question(?Name,-Question,-Answer,-Explanation)
	isa_relation(?Name, ?Arity)
	isa_rule(?Name,-Conditions,-Action,-Explanation,-Score)
	isa_slot(?Attribute,?Frame,-Value)
	isa_synonym(?Name,-Term)
	isa_template(?Name,-Positive,-Negative)
	isa_value(?Slot,-Value)
	isa_watchdog(?Name,?Attribute,?Frame,-Context,-Check,-Action)
	is_known(+Slot)
	lookup(+Attribute,+Frame,-Value)
	lookup(+Attribute,+Frame,-Value,-Ancestor)
	misfire(+Name)
	new_constraint(+Name,?Attr,?Frame,?Old,?New,+Context,+Check,+Action)
	new_data(+Name,+Action)
	new_default(+Attribute,+Frame,+Value)
	new_demon(+Name,?Attribute,?Frame,?Old,?New,+Context,+Action)
	new_frame(+Name,+Parents)
	new_function(+Name, +Arguments, +Value)
	new_group(+Name,+Elements)
	new_instance(+Instance,+Frame)
	new_launch(+Name,?Instance,?Frame,+Context,+Action)
	new_link(+Attribute,+Frame,+Parents)
	new_logic(+Logic)
	new_question(+Name,+Question,+Answer,+Explanation)
	new_relation(+Name,+Arity)
	new_rule(+Name,+Conditions,+Action,+Explanation,+Score)
	new_slot(+Attribute,+Frame,+Value)
	new_synonym(+Name,+Term)
	new_template(+Name,+Positive,+Negative)
	new_value(+Slot,+Term)
	new_watchdog(+Name,?Attribute,?Frame,+Context,+Check,+Action)
	nospy_chain
	nospy_fact(?Name)
	nospy_rule(?Name)
	nospy_slot(?Attribute, ?Frame)
	once(+Name,+Names,-Newnames)
	possibles(+Name,+Names,-Newnames)
	prove(+Goal)
	reconsult_rules(+FileName)
	remember_exception(+Term)
	remember_fact(+Term)
	remove_constraints
	remove_constraints(+Attribute,+Frame)
	remove_data
	remove_defaults
	remove_defaults(+Frame)
	remove_demons
	remove_demons(+Attribute,+Frame)
	remove_exceptions
	remove_facts
	remove_frame(+Name)
	remove_frames
	remove_function(+Name)
	remove_functions
	remove_groups
	remove_instance(+Instance)
	remove_instances
	remove_instances(+Frame)
	remove_launches
	remove_launches(+Frame)
	remove_links
	remove_links(+Frame)
	remove_logic(+Logic)
	remove_logics
	remove_questions
	remove_relation(+Name, +Arity)
	remove_relations
	remove_rules
	remove_slots
	remove_slots(+Frame)
	remove_synonyms
	remove_templates
	remove_templates(+Name)
	remove_watchdogs
	remove_watchdogs(+Attribute,+Frame)
	restart
	run_data
	run_data(+Name)
	some_instance(+Name,?Element)
	spied_chain
	spied_fact(?Name)
	spied_rule(?Name)
	spied_slot(?Attribute, ?Frame)
	spy_chain
	spy_fact(?Name)
	spy_rule(?Name)
	spy_slot(?Attribute, ?Frame)
	sub_value(+Slot,+Term)
	trigger_rule(+Name)

	10. Example - Robbie Goes Shopping
	The Problem
	The Configuration Section
	The Shopping Question
	The Compatibility Rules
	The Resource Allocation Section
	The Packing Rules

	Packing The Items
	The Initial Goal
	Templates

	Appendix A - Examples
	Example 1 - Analysing a Taxonomy
	The Animal Kingdom
	Representing Mammals
	Representing Birds
	Representing Fish
	The Identification Algorithm
	Some Example Questions
	Example 2 - The Water Containers
	The Problem
	The Containers
	The Tests
	The Operations
	The Rules
	The Rule Network
	The Ruleset

	Appendix B - Formal Definition of KSL
	Grammatical Structures
	Optional Structures
	Disjunction & Conjunction
	Sequences

	KSL Sentences
	Frame
	Instance
	Launch
	Demon
	Constraint
	Watchdog
	Production Rule
	Ruleset
	Action
	Relation
	Function
	Command
	Data
	Question
	Group
	Synonym
	Template

	KSL Formulae
	Condition
	Comparison
	Directive
	Control Statement
	Procedure

	KSL Objects
	Variant
	Set
	General Term
	Arithmetic Expression

	Appendix C - KSL Keyword Glossary
	
	
	a / an
	above
	according
	action
	add
	all
	always
	and
	another
	answer
	any
	anybody / anything
	are
	ask
	at
	because
	become / becomes
	below
	browse
	by
	change / changes
	check
	choose
	come
	conflict
	constraint
	contains
	cyclic
	data
	default
	demon
	demoting
	different
	divided
	do
	does
	doing
	each
	else
	empty
	end
	equal
	every
	false
	file
	first
	for
	forget
	frame
	from
	function
	greater
	group
	if
	in
	include
	include / includes
	included
	inherit
	initiate
	input
	instance
	integer
	is
	its
	kind
	launch
	less
	minus
	name
	network
	new
	nobody / nothing
	not
	number
	of
	one
	or
	otherwise
	plus
	power
	promoting
	question
	relation
	remember
	remove
	removing
	repeat
	requested
	resolution
	rotation
	rule
	ruleset
	`s
	score
	select
	selected
	served
	set
	some
	somebody / something
	step
	subtract
	such
	synonym
	template
	terminate
	than
	that
	the
	their
	then
	threshold
	times
	to
	transition
	true
	unsatisfied
	until
	update
	using
	watchdog
	when
	where
	while
	whose
	'{' , '}'
	'[' , ']'
	$
	:
	:=
	=
	\=
	<
	=<
	>
	>=
	+
	-
	*
	/
	^

	Appendix D - Dealing with Uncertainty
	Uncertainty in Data
	Combining Probabilities
	Affirms and denies
	Odds and Probability
	Absence of Evidence
	Certainty Theory

