
Algorithms for Dempster-Shafer Theory

Nic Wilson
School of Computing and Mathematical Sciences

Oxford Brookes University
Gipsy Lane, Headington, Oxford, OX3 0BP, U.K.

pnwilson@brookes.ac.uk

1 Introduction

The method of reasoning with uncertain information known as Dempster-Shafer
theory arose from the reinterpretation and development of work of Arthur Demp-
ster [Dempster, 67; 68] by Glenn Shafer in his book a mathematical theory of
evidence [Shafer, 76], and further publications e.g., [Shafer, 81; 90]. More re-
cent variants of Dempster-Shafer theory include the Transferable Belief Model
see e.g., [Smets, 88; Smets and Kennes, 94] and the Theory of Hints e.g., [Kohlas
and Monney, 95].

Use of the method involves collecting a number of pieces of uncertain infor-
mation, which are judged to be ‘independent’. Each individual piece of informa-
tion is represented within the formalism as what is known as a mass function,
these are combined using Dempster’s rule, and the degrees of belief for vari-
ous propositions of interest are then calculated. Propositions are expressed as
subsets of a set of possibilities, known as the frame of discernment.

Two major problems with the theory are (i) understanding what the calcu-
lated values of belief mean; this issue is briefly discussed in section 2.5; and (ii)
the computational problems of Dempster’s rule, to which most of this chapter
is addressed.

The obvious algorithm for calculating the effect of Dempster’s rule, as sketched
in [Shafer, 76], is (at worst) exponential and [Orponen, 90] has shown that the
problem is #P-complete. However Monte-Carlo methods can be used to ap-
proximate very closely a value of combined belief, and these have much better
complexity: some methods have complexity almost linearly related to the size
of the frame, but with a high constant factor because of having to use a large
number of trials in order to ensure that the approximation is a good one.

In many applications the frame of discernment is expressed in terms of a
product set generated by the values of a number of variables (see section 9),
so the size of the frame is itself exponential in the number of variables. Glenn
Shafer and Prakash Shenoy have devised techniques for this situation. The exact

1

methods are again only feasible for a restricted class of problems. Monte-Carlo
methods can be used in conjunction with the Shafer-Shenoy techniques, which
appear to be more promising.

Section 2 gives the mathematical fundamentals of Dempster-Shafer theory.
Section 3 describes algorithms for performing the most important operations
on mass functions, and gives their efficiency. Section 4 describes algorithms for
converting between the various mathematically equivalent functions used in the
theory. Section 5 describes various exact methods for performing Dempster’s
rule.1 Some approximate methods are briefly discussed in section 6. Monte-
Carlo algorithms are described in section 7. Section 8 shows how other functions
used in decision-making can be calculated. Sections 9 and 10 consider algorithms
for computing the effect of Dempster’s rule for the situation when the frame is a
large product set, section 9 giving exact methods, and section 10, Monte-Carlo
methods.

2 Some Fundamentals of Dempster-Shafer The-
ory

This section describes some of the mathematical fundamentals of the theory;
most of the material comes from a mathematical theory of evidence [Shafer, 76].

2.1 Belief Functions, Mass Functions and Other Associ-
ated Functions

Before talking about degrees of belief we must define a set of propositions of
interest. To do so we use what Shafer calls a frame of discernment (usually
abbreviated to frame). Mathematically this is just a set, but it is interpreted as
a set of mutually exclusive and exhaustive propositions. The propositions of in-
terest are then all assumed to be expressed as subsets of the frame. Throughout
this chapter it is assumed that the frame of discernment Θ is finite2.

If we are considering subsets of a given frame (of discernment) Θ, and A ⊆ Θ
we will sometimes write Ā to mean Θ− A, i.e., the set of elements of Θ not in
A.

A mass function over Θ (also known as a basic probability assignment)3 is a
function m: 2Θ → [0, 1] such that m(∅) = 0 and

∑
A∈2Θ m(A) = 1.

1Another exact approach is given in chapter 6 of this volume, using probabilistic argumen-
tation systems.

2However, some of the Monte-Carlo methods described in section 7 do generalise to infinite
frames.

3The latter is the term Shafer uses, though he does refer to the values as ‘probability
masses’. The term ‘mass function’ is also commonly used, and is a less cumbersome term for
such a fundamental entity.

2

The set of focal sets Fm of mass function m is defined to be the set of subsets
of Θ for which m is non-zero, i.e., {A ⊆ Θ : m(A) 6= 0}. The core Cm of a mass
function m is defined to be the union of its focal sets, that is,

⋃
A∈Fm

A (see
[Shafer, 76], p40). m can be viewed as being a mass function over Cm, which is
sometimes advantageous computationally.

Function Bel: 2Θ → [0, 1] is said to be a belief function over Θ if there exists
a mass function m over Θ with, for all A ∈ 2Θ, Bel(A) =

∑
B⊆A m(B). Bel is

said to be the belief function associated with m, and will sometimes be written
Belm.

Clearly, to every mass function over Θ there corresponds (with the above
relationship) a unique belief function; conversely for every belief function over
Θ there corresponds a unique mass function. To recover mass function m from
its associated belief function Bel we can use the following equation ([Shafer, 76],
page 39):

For A ⊆ Θ, m(A) =
∑
B⊆A

(−1)|A−B|Bel(B),

Belief functions are intended as representations of subjective degrees of be-
lief, as described in [Shafer 76; 81].

The plausibility function4 Pl : 2Θ → [0, 1] associated with mass function m
is defined by the equations: for all A ∈ 2Θ, Pl(A) =

∑
B∩A 6=∅ m(B).

There is a simple relationship between the belief function Bel and the plau-
sibility function Pl associated with a particular mass function m: for A ⊆ Θ,
Pl(A) = 1−Bel(Ā) and Bel(A) = 1−Pl(Ā). The problem of computing values
of plausibility is thus equivalent to the problem of computing values of belief;
because of this the plausibility function will not be mentioned much in this
chapter.

Loosely speaking, a mass function is viewed as a piece of ambiguous evidence
that may mean A, for any A ∈ Fm; we consider that, with probability m(A), it
means A. Bel(A) can then be thought of as the probability that the ambiguous
evidence implies A, and Pl(A) as the probability that the evidence is consistent
with A.

The commonality function Q : 2Θ → [0, 1] associated with mass function m
is defined by the equations: for all A ∈ 2Θ, Q(A) =

∑
B⊇A m(B). It doesn’t

usually have a simple interpretation but it allows a simple statement of Demp-
ster’s rule (see 2.4). A commonality function determines and is determined by a
mass function: if Qi is the commonality function associated with mass function
mi for i = 1, 2, then Q1 = Q2 if and only if m1 = m2.

A very important simple kind of belief function is a simple support function
[Shafer, 76]. A simple support function has at most two focal sets, at most
one of them being different from the frame Θ. Thus if m is the mass function

4[Shafer, 76] uses the term upper probability function.

3

corresponding to a simple support function, then there exists A ⊆ Θ and r ∈
[0, 1] with m(A) = r and m(Θ) = 1 − r. The case where m(A) = 1 represents
certain evidence that proposition A is true. Otherwise a simple support function
represents uncertain evidence supporting a proposition A.

Simple support functions are fundamental units in a mathematical theory of
evidence [Shafer, 76]. Dempster’s rule also appears to have stronger justifica-
tions for the combination of a number of simple support functions (see section
2.5).

2.2 Source Triples

The formalism of [Shafer, 76] was derived from that of Arthur Dempster [Demp-
ster, 67]; Dempster’s framework is more convenient for some of the methods for
calculating Dempster-Shafer belief, so here we describe his framework (actually
a slight variant of it). See also A Mathematical Theory of Hints [Kohlas and
Monney, 95] which is another Dempster-Shafer style formalism which builds
mathematically on Dempster’ work.

Define a source triple over Θ to be a triple (Ω,P,Γ) where Ω is a finite set,
P is a strictly positive probability distribution over Ω (so that for all ω ∈ Ω,
P(ω) 6= 0) and Γ is a function from Ω to 2Θ − {∅}.

One interpretation of source triples is that we’re interested in Θ, but we have
Bayesian beliefs about Ω, and a logical connection between the two, expressed
by Γ. The interpretation of Γ is that if the proposition represented by ω is true,
then the proposition represented by Γ(ω) is also true.

Associated with a source triple is a mass function, and hence a belief function
and a commonality function, given respectively by m(A) =

∑
ω : Γ(ω)=A P(ω),

Bel(A) =
∑
ω : Γ(ω)⊆A P(ω) and Q(A) =

∑
ω : Γ(ω)⊇A P(ω). Conversely, any

mass/belief/commonality function can be expressed in this way for some (non-
unique) source triple. For example, if m is a mass function over Θ, we can define
a corresponding source triple (Ω,P,Γ) as follows: define Ω to be {1, . . . , u} where
u = |Fm|, the number of focal sets of m; label the elements of Fm as A1, . . . , Au
and define P and Γ by, for j = 1, . . . , u, P(j) = m(Aj) and Γ(j) = Aj .

2.3 Conditioning

The conditioned mass function is intended to represent the impact of additional
certain information B. Conditioning is a special case of Dempster’s rule of
combination (see below) and like the general rule requires a sort of independence.

Let m be a mass function over Θ and B be a subset of Θ; also suppose that
B has non-empty intersection with the core of m, so that there exists C ⊆ Θ
with m(C) 6= 0 and C ∩ B 6= ∅. Define the mass function mB , the conditional

4

of m given B, by, for ∅ 6= A ⊆ Θ,

mB(A) = K
∑

C:C∩B=A

m(C),

where normalisation constant K is given by K−1 =
∑
C:C∩B 6=∅ m(C).

Let BelB be the belief function associated with mB . It can be calculated
directly from Bel, the belief function associated with m, using the equations:
for all A ⊆ Θ,

BelB(A) =
Bel(A ∪ B̄)− Bel(B̄)

1− Bel(B̄)
.

BelB can be viewed as a belief function over B (rather than Θ), and the same
applies to mB .

We can also condition source triple (Ω,P,Γ) by B to produce source triple
(ΩB ,PB ,ΓB) defined as follows: ΩB = {ω ∈ Ω : Γ(ω) ∩B 6= ∅}, PB(ω) =
P(ω)/P(ΩB) for ω ∈ ΩB , and ΓB(ω) = Γ(ω) ∩ B. As one would expect, if
m is the mass function associated with (Ω,P,Γ) then mB is the mass function
associated with (ΩB ,PB ,ΓB).

2.4 Dempster’s Rule of Combination

Suppose we have a number of mass functions (or source triples) each represent-
ing a separate piece of information. The combined effect of these, given the
appropriate independence assumptions, is calculated using Dempster’s rule (of
combination). As we shall see, this operation can be computationally very ex-
pensive, and this is a major drawback to Dempster-Shafer theory. The major
focus of this chapter is computation of combined Dempster-Shafer belief.

2.4.1 Dempster’s rule for mass functions

Let m1 and m2 be mass functions over frame Θ. Their combination using
Dempster’s rule, m1 ⊕m2, is defined by, for ∅ 6= A ⊆ Θ,

m1 ⊕m2(A) = K
∑

B,C :B∩C=A

m1(B)m2(C),

where K is a normalisation constant chosen so that m1⊕m2 is a mass function,
and so is given by

K−1 =
∑

B,C :B∩C 6=∅

m1(B)m2(C).

Clearly this combination is only defined when the right hand side of the last
equation is non-zero; this happens if and only if the intersection of the cores of
m1 and m2 is non-empty.

5

Conditioning can be seen to be mathematically a special case of combination.
For B ⊆ Θ, let IB be the mass function defined by IB(B) = 1 (and hence
IB(A) = 0 for A 6= B); IB expresses certainty that B is true, and is equivalent
to asserting proposition B. Conditioning by B is equivalent to combining with
IB : for mass function m, the conditional of m given B, mB , is equal to m⊕IB .

The operation ⊕ is associative and commutative. The combination
⊕k

i=1 mi

of mass functions m1, . . . ,mk (over Θ) is well-defined if and only if the inter-
section of all the cores is non-empty, that is,

⋂k
i=1 Cmi

6= ∅. In this case, their
combination

⊕k
i=1 mi can be shown to be given by, for ∅ 6= A ⊆ Θ,

k⊕
i=1

mi(A) = K1,...,k

∑
B1,...,Bk :B1∩···∩Bk=A

m1(B1) · · ·mk(Bk),

where normalisation constant K1,...,k is given by

(K1,...,k)−1 =
∑

B1,...,Bk :B1∩···∩Bk 6=∅

m1(B1) · · ·mk(Bk).

The normalisation constantK1,...,k can be viewed as a measure of the conflict
between the evidences (see [Shafer, 76, page 65]).

Let
⊕k

i=1 Belmi and
⊕k

i=1 Qmi
be the belief function and commonality func-

tion, respectively corresponding to the combined mass function
⊕k

i=1 mi. They
satisfy, for ∅ 6= A ⊆ Θ,

k⊕
i=1

Belmi
(A) = K1,...,k

∑
B1...,Bk : ∅6=B1∩···∩Bk⊆A

m1(B1) · · ·mk(Bk)

and
k⊕
i=1

Qmi
(A) = K1,...,k Qm1

(A) · · ·Qmk
(A).

This last result can be more succinctly written as
⊕k

i=1 Qmi
= K1,...,k

∏k
i=1 Qmi

,
showing that for commonalities, combination is just normalised product.

The Complexity of Dempster’s Rule

[Orponen, 90] has shown that the problem is #P-complete, for calculating a
single value of combined belief, mass or commonality, where the problem pa-
rameters are |Θ| and k, respectively the size of the frame of discernment and the
number of mass functions being combined. This makes the problem (given the
usual assumption of P 6= NP) considerably worse than the ‘underlying logic’
i.e., the operations on subsets (e.g., intersection, complement etc.) which are
linear in |Θ| and k.

6

2.4.2 Dempster’s rule for source triples

The result of applying Dempster’s rule to a finite set of source triples {(Ωi,Pi,Γi),
for i = 1, . . . , k}, is defined to be the triple (Ω,PDS,Γ), which is defined as fol-
lows. Let Ω× = Ω1 × · · · × Ωk. For ω ∈ Ω×, ω(i) is defined to be its ith
component, so that ω = (ω(1), . . . , ω(k)). Define Γ′: Ω× → 2Θ by Γ′(ω) =⋂k
i=1 Γi(ω(i)) and probability function P′ on Ω× by P′(ω) =

∏k
i=1 Pi(ω(i)), for

ω ∈ Ω×. Let Ω be the set {ω ∈ Ω× : Γ′(ω) 6= ∅}, let Γ be Γ′ restricted to Ω, and
let probability function PDS on Ω be P′ conditioned on Ω, so that for ω ∈ Ω,
PDS(ω) = P′(ω)/P′(Ω).

The combined measure of belief Bel over Θ is thus given, for A ⊆ Θ, by
Bel(A) = PDS({ω ∈ Ω : Γ(ω) ⊆ A}), which we abbreviate to PDS(Γ(ω) ⊆ A).
The mass function associated to the combined source triple is given by m(A) =
PDS(Γ(ω) = A). Letting, for i = 1, . . . , k, mi be the mass function corresponding
to (Ωi,Pi,Γi), then m = m1 ⊕ · · · ⊕ mk where ⊕ is Dempster’s rule for mass
functions as defined above. Furthermore the normalisation constant K1,...,k

defined above equals 1/P′(Ω).

2.5 Justification of Dempster’s Rule

We need to be able to give a meaning to belief/mass functions etc. that is
preserved by Dempster’s rule. This section is based on material from [Wilson,
93a], which has more discussion of some of the issues.

Dempster’s explanation of his rule in [Dempster, 67] amounts to assuming
independence (so that for any ω ∈ Ω×, the propositions represented by ω(i)
for i = 1, . . . , k are considered to be independent) thus generating the product
probability function P′(ω) =

∏k
i=1 Pi(ω(i)), for ω ∈ Ω×. If Γ′(ω) is empty

then ω cannot be true; this is because if ω is true then each ω(i) is true, but
then, for each i, Γi(ω(i)) is true (this is the intended meaning of each Γi),
so ∅ = Γ′(ω) =

⋂k
i=1 Γi(ω(i)) is true, but this is impossible as the empty set

represents a proposition that cannot be true. Therefore P is then conditioned
on the set {ω : Γ′(ω) 6= ∅}, leading to Dempster’s rule.

This two-stage process of firstly assuming independence, and then condition-
ing on Γ′(ω) being non-empty, needs to be justified. The information given by
Γ′ is a dependence between ωi for i ∈ {1, . . . , k}, so they clearly should not be
assumed to be independent if this dependence is initially known. Some other
justifications also appear not to deal satisfactorily with this crucial point. How-
ever, Shafer’s random codes canonical examples justification [Shafer, 81, 82b;
Shafer and Tversky, 85] does do so.

Shafer’s random codes canonical examples

Here the underlying frame Ω is a set of codes. An agent randomly picks a
particular code ω with chance P(ω) and this code is used to encode a true

7

statement, which is represented by a subset of some frame Θ. We know the
set of codes and the chances of each being picked, but not the particular code
picked, so when we receive the encoded message we decode it with each code
ω′ ∈ Ω in turn to yield a message Γ(ω′) (which is a subset of Θ for each ω′).
This situation corresponds to a source triple (Ω,P,Γ) over Θ.

This leads to the desired two-stage process: for if there are a number of
agents picking codes stochastically independently and encoding true (but pos-
sibly different) messages then the probability distributions are (at this stage)
independent. Then if we receive all their messages and decode them we may
find certain combinations of codes are incompatible, leading to the second, con-
ditioning, stage.

To represent a piece of evidence, we choose the random codes canonical
example (and associated source triple) that is most closely analogous to that
piece of evidence. Two pieces of evidences are considered to be independent if
we can satisfactorily compare them to the picking of independent random codes.
However, in practice, it will often be very hard to say whether our evidences
are analogous to random codes, and judging whether these random codes are
independent may also be very hard, especially if the comparison is a rather vague
one. Other criticisms of this justification are given in the various comments on
[Shafer, 82a, 82b], and in [Levi, 83].

Shafer’s justification applies only when the underlying probability function
has meaning independently of the compatibility function, that is, when the
compatibility function is transitory [Shafer, 92] (see also [Wilson, 92b] for some
discussion of this point). Many occurrences of belief functions are not of this
form (in particular, Bayesian belief functions and belief functions close to being
Bayesian cannot usually be easily thought of in this way).

[Shafer and Tversky, 85] gives further (and perhaps more natural) canoni-
cal examples which only apply to two important special cases: simple support
functions (and their combinations) and consonant support functions (a belief
function whose focal sets are nested).

Axiomatic justifications of Dempster’s rule have also been derived. In [Wil-
son, 89; 92c] it is shown how apparently very reasonable assumptions determine
Dempster’s rule for the special case where the input mass functions are sim-
ple support functions. [Wilson, 93a] gives a general axiomatic justification;
although the assumptions of this general justification seem natural, they are of
a somewhat abstract form so it is hard to know in what situations they can
safely be made.

There are also justifications of the unnormalised version of Dempster’s rule
(see section 5) e.g., [Hájek, 92], based on [Smets, 90]; however the meaning of
the subsequent values of belief seems somewhat unclear.

There has been much criticism of certain examples of the use of Dempster’s
rule e.g., [Zadeh, 84; Pearl, 90a, 90b; Walley, 91; Voorbraak, 91; Wilson, 92b].

8

Many of these criticisms can be countered e.g., those in [Zadeh, 84] were con-
vincingly answered in [Shafer, 84], and [IJAR, 92] has much discussion of Judea
Pearl’s criticisms. However, despite this, there are situations where Dempster’s
rule does appear to be counter-intuitive.

It seems to this author that considerable care is needed in the representation
of evidence to ensure sensible results.

3 Operations on Mass Functions and Other Mass
Potentials

Although we are finally interested in values of belief (Bel), the mass function is in
a sense the more fundamental mathematical entity. It is also more convenient for
computer storage purposes, at least when the number of focal sets is small. This
section considers the efficient implementation of various important operations
on mass functions. For convenience, we actually consider a slightly more general
object than a mass function.

A mass potential m over Θ is defined to be a function from 2Θ to [0, 1]. It
is said to be proper if there exists ∅ 6= A ⊆ Θ with m(A) 6= 0.

Mass potentials are a little more general than mass functions, and are used
as representations of mass functions: proper mass potential m is intended to
represent the mass function m∗ given by, m∗(∅) = 0, and for all ∅ 6= A ⊆ Θ,
m∗(A) = Km(A) where K−1 =

∑
A 6=∅ m(A). This operation of mapping m to

m∗ is called normalisation. As for mass functions, the set of focal sets Fm of
mass potential m is defined to be the set of subsets A such that m(A) 6= 0.

In 3.1 three different ways of representing a mass potential are described,
along with indications of how some basic operations are performed with these
representations. Section 3.2 describes the operation of conditioning a mass
potential; 3.3 briefly discusses calculating the combined core of a number of mass
potentials, which can be useful when computing their combination. 3.4 describes
lossless coarsening—reducing the size of the frame of discernment without losing
information.

3.1 The Representation of a Mass Potential

First we need a representation of subsets of the frame Θ. We enumerate Θ
as {θ1, . . . , θn}. A subset A of Θ will be represented in an n element boolean
array with, for j = 1, . . . , n, the jth value in the array being TRUE iff θj ∈ A.
Sometimes, to be explicit, this representation of A will be written as A; usually,
however, the same symbol A will be used for the subset and its representation.
This representation A may also be thought of as an n-digit binary number,
identifying TRUE with 1 and FALSE with 0, and where the most significant

9

digit represents θ1. This also defines a total order < on subsets of Θ which we
will be using in the second and third representations of mass potentials, with ∅
being smallest, {θn} being next, then {θn−1}, then {θn−1, θn} and so on, until
we reach the largest, Θ.

The complexity of operations on mass potentials depends on their computer
representation; different representations have different advantages. Three rep-
resentations will be discussed.

3.1.1 n-dimensional array representation

Perhaps, the most obvious representation of a mass potential m is in a |Θ|-
dimensional array {0, 1} × · · · × {0, 1} of reals in [0, 1]. The value m(∅) is put
in position (0, . . . , 0, 0), the value m({θn}) is put in position (0, . . . , 0, 1) and so
on, so that the value m(A) is put in position corresponding to A.

With this representation looking up a value m(A) (for given A) is fast: time
proportional to |Θ|. However, many operations take time exponential in |Θ|,
such as normalising, listing the focal sets and conditioning. If the number of
focal sets |Fm| is close to 2|Θ|, this is inevitable; however very often in problems
of interest, |Fm| is very much smaller than 2|Θ|, so it makes sense to use a
representation which makes use of this sparseness.

3.1.2 Ordered list representation

This representation of a mass potential is a list of all pairs (A, r), where A ∈ F ,
the set of focal sets of m, and r = m(A) 6= 0. Each A ∈ F may appear only
once so the length of the list is |F|. Furthermore, the ordering of this list is
determined by the sets A, using the total (lexicographic) ordering of subsets
given above with smallest A first. Hence if m(∅) 6= 0, the first element in the
list is

(
∅,m(∅)

)
. We can write the list as [(A1, r1), . . . , (Au, ru)] where u = |F|

and for t = 1, . . . , u− 1, At < At+1.
It is important (at least for some of the operations) that the computer rep-

resentation of the list allows ‘random access’, that is, we can move quickly to
any pair (At, rt), without having to work our way through the earlier pairs;
for example, we might use a 1-dimensional array to represent the list. We will
assume5 that, given t, the time to retrieve rt takes log |F|, retrieving a single

5It might be suggested that we’re being too conservative here, and instead retrieving rt

and a single co-ordinate of At should be assumed to take just constant time. However, at least
in an idealised computer, it seems appropriate to assume that the time to access an element
of an array of size u does depend on u, and logarithmically because it needs proportional to
log u bits to store the address, which will need to be processed in the retrieval.

It might even be argued that there’s actually a very small u1/3 term because of the travelling
time of the information: each element of the array needs a certain amount of (physical) space to
store it, space is 3-dimensional, and the speed of travel is limited by the speed of light. However
the array, and hence the computer, would probably have to be of (literally) astronomical size
for this term to be significant.

10

co-ordinate of At (if we want to find out if θj ∈ At) takes log |F|+ log |Θ| and
retrieving the whole of At takes time proportional to |Θ| (since log2 |F| ≤ |Θ|).

With this representation normalisation can be performed in time propor-
tional to |F|. Listing the focal sets can be also done quickly: in time propor-
tional to |F| × |Θ|.

Looking up a value m(A) (for given A) is more complicated than for the n-
dimensional array representation. We can use a binary search method to check
if (A, r) is in the list: we first look at At for t closest to u/2 and see if A < At;
if so we look at At′ for t′ closest to t/2; otherwise, we look at At′′ for t′′ closest
to 3t/2 etc. The number of steps is proportional to log |F|. Each step involves
retrieving a set and checking the relative ordering of two subsets, which may
be performed in time proportional to |Θ|. Thus the computation6 is at worst
proportional to |Θ| log |F|.

An obvious algorithm can calculate Bel(A), for a given set A, in time pro-
portional to |F| × |Θ|, though again, in certain circumstances it may well be
possible to perform this operation faster.

Sorting This is a crucial issue for this representation, as it is needed when
we condition or combine. Suppose we have an unordered list of pairs (A, r) of
length v, possibly with some sets A appearing more than once. How do we sort
them into the desired ordered list representation, with no repeats? This ordered
list should consist of pairs (A, r′), where r′ is the sum of all r such that (A, r)
appears in the unordered list.

An algorithm similar to QuickSort may be used:
Split the unordered list into two lists, the first consisting of pairs (A, r) with

A 63 θ1, the second consisting of pairs (A, r) with A 3 θ1.
We will recursively sort each of the two lists and then append the two sorted

lists.
If the first list is empty we need do nothing more with it. Otherwise, to sort

the first list we split the list into two lists, one consisting of pairs (A, r) with
A 63 θ2.

This downward recursion proceeds until we have gone through all θj , j =
1, . . . , n. At this point, we always generate a list such that if (A, r) and (A′, r′)
are elements of this list then we must have A = A′. Therefore we can merge all
these terms creating a single element list [(A, r′′)] with r′′ being the sum of all
the r in the list.

There are |Θ| levels in the recursion, and the total number of operations
needed for each level is proportional to v(log v + log |Θ|) so the number of op-
erations required is proportional to |Θ|v(log v + log |Θ|).

6It may well be possible to improve on this, as we’ll usually only need to look at a small
number of co-ordinates to check the relative ordering of A and some At, since we’ll usually
know the initial co-ordinates from earlier steps. It thus may be that looking up a value m(A)
can on average be done in time close to |Θ|.

11

3.1.3 Binary Tree representation

The above sorting procedure suggests a refinement of the ordered list repre-
sentation: a binary tree whose leaves are pairs (A,m(A)) for focal sets A, and
whose branches and other nodes allow quick access to the focal sets. Each split
in the tree divides focal sets containing a particular θj from those focal sets not
containing θj .

More precisely: We first find smallest k such that {A ∈ F : A 63 θk} and
{A ∈ F : A 3 θk} are both non-empty. Call these two sets F0 and F1 respec-
tively. The first k − 1 digits of all A ∈ F (viewed as |Θ|-digit binary numbers)
are the same; call this k − 1 digit number b. Label the root node F k−1

b .
We will imagine the tree being drawn with the root at the top, going down

to the leaves at the bottom.
Create two branches, labelled 0 and 1, going down from the root node. In the

tree we will construct, the leaves below the 0 branch will be all pairs (A,m(A))
with A ∈ F0. The binary representation of such A all begin with b0.

Proceeding recursively, we find smallest l (if one exists) such that {A ∈ F0 : A 63 θl}
and {A ∈ F0 : A 3 θl} are both non-empty. The first l − 1 digits of all A ∈ F0

are the same; call this l− 1 digit number b′. Label the node at the end of the 0
branch F l−1

b′ .
On the other hand, if no such l exists, then F0 has just one element, call

it A. We then create leaf node (A,m(A)) at the end of the 0 branch (with, as
ever, set A being represent by a boolean array of size |Θ|).

The same procedure is used at each non-leaf node to create two new nodes.

The total number of nodes in the tree is 2|F|−1, so the storage space required
is proportional to |Θ||F|. This construction is very closely related to the algo-
rithm given for sorting a list representation, given above. The time required to
construct the binary tree in this way is proportional to |Θ||F|(log |Θ|+log |F|).

The time necessary to insert a new leaf node into the binary tree is pro-
portional to |Θ| (a new internal node is added in the process). We could also
construct the tree by starting off with just one focal set, constructing the as-
sociated binary tree (which has just one node), and then incrementally insert
the other focal sets. Perhaps surprisingly, this way of constructing the binary
tree can be a little more efficient, taking time proportional to |Θ||F|. This
incremental construction is also useful when combining mass functions.

Because of the overheads of this representation, some operations, such as
normalisation and listing all the focal sets, take slightly longer (by a constant
factor) than the ordered list representation. Other operations, however, are
faster with this representation; for example, determining m(A) for a given A
takes time proportional to |Θ| since we can use the binary representation of A
to follow the branches along the binary tree. Another operation which is faster
is, for given A ⊆ Θ, determining Bel(A).

12

3.1.4 Conversion between the three representations

Each of the three representations has its advantages, so it can be useful to be
able to move between different representations.

Converting between the Ordered List and Binary Tree representations can
be done very efficiently, in either direction in time proportional to |F||Θ|.

A natural way of converting a mass potential from Ordered List (or Binary
Tree) representation to n-dimensional array representation, is first to initialise
the array all to zeros, and then to insert the masses into their correct place.
The total time is then related to 2|Θ|. However, if it were possible (this de-
pends very much on computer language and implementation used) to bypass
the initialisation part, the operation would take time proportional to |F||Θ|.

The other direction, converting from n-dimensional array representation to
Ordered List (or Binary Tree) representation is clearly related to 2|Θ|.

3.2 Conditioning a Mass Potential

Let m be a mass potential and B be a subset of Θ. Define m′
B , the unnormalised

conditional of m given B, by, for A ⊆ Θ, m′
B(A) =

∑
C:C∩B=A m(C), which,

when A ⊆ B, is equal to
∑
D⊆B̄ m(A ∪D).

The mass function mB , the conditional of m given B, is defined to be m′
B

normalised, and is hence given by: mB(∅) = 0, and for A 6= ∅, mB(A) =
K−1

∑
C:C∩B=A m(C) where K =

∑
C:C∩B 6=∅ m(C). The conditioned mass

function mB is only well-defined if there exists C ∈ Fm with C ∩B 6= ∅.

To calculate a conditioned mass function mB from a mass potential m we
can first calculate the unnormalised conditional and then normalise it (the nor-
malisation factor K can be calculated in the first stage). To do this in the
Ordered List representation we can first create a new list: we go through the
Ordered List, and whenever we find a pair (C, r) with C ∩ B 6= ∅ we add the
pair (C ∩B, r) to our new list (where the sets are represented as boolean arrays
of size |B|). We then sort the list, removing repeats, as described above in
section 3.1.2. Finally we normalise. The total number of operations required is
proportional to |F| × |B| × (log |F|+ log |Θ|).

The complexity is approximately similar using the Binary Tree representa-
tion. Conditioning using the n-dimensional array representation is exponential
in |Θ|.

3.3 Calculating the Combined Core of Several Mass Po-
tentials

Many of the algorithms given below have complexity related to the size of the
frame Θ. This suggests that if we could reduce the size of the frame, without

13

losing any information, then the complexity of those algorithms could be con-
siderably improved. This especially applies to some uses of the Fast Möbius
transform (see section 4.2), which is exponential in |Θ|.

The core Cm of a mass potential m is the union of its focal sets, that is,⋃
A∈F A (see [Shafer, 76], p40). Define the combined core of a number of mass

potentials m1, . . . ,mk to be the intersection of their cores, Cm1 ∩ · · ·∩Cmk
. This

is, in fact, the core of their combination m1 ⊕ · · · ⊕mk (see section 2.4), if the
latter is defined; otherwise it is empty.

All the methods given below for calculating the effect of Dempster’s rule can
sometimes be very significantly improved by first conditioning all the constituent
mass functions by the combined core (this doesn’t change the result). As well as
reducing the size of the frame, this will sometimes eliminate many of the focal
sets of the constituent mass functions.

The combined core can be calculated in time proportional to |Θ|
∑k
i=1 |Fmi |

using the Ordered List or Binary Tree representations. The operation using the
n-dimensional Array representation is exponential in |Θ|.

3.4 Lossless Coarsening

Another way of reducing the size of the frame is to merge some elements together
(known as coarsening [Shafer, 76]), which in certain cases results in no loss of
information.

Define a coarsening of Θ to be a pair7 (Θ′, τ) where τ is a function from
Θ onto Θ′ (so that τ(Θ) = Θ′). Define the function τ−1 : 2Θ′ 7→ 2Θ by
τ−1(A) = {θ ∈ Θ : τ(θ) ∈ A}. Function ρ : 2Θ′ 7→ 2Θ is said to be a refining
if there exists coarsening (Θ′, τ) of Θ with ρ = τ−1 (this can be shown to be
equivalent to the definition in [Shafer, 76], p115).

The coarsening (Θ′, τ) is essentially characterised by the equivalence relation
≈τ defined by θ ≈τ ψ iff τ(θ) = τ(ψ); for if (Θ′′, ν) is another coarsening of Θ
with ≈ν =≈τ then Θ′ and Θ′′ are the same size, and one can be viewed as just
a relabelling of the other.

For any equivalence relation ≈ on Θ we can find a coarsening (Θ′, τ) with
≈τ =≈. For example, we could let Θ′ be the set of ≈-equivalence classes of
Θ, and τ be the associated projection; we call this the canonical coarsening
corresponding to ≈.

3.4.1 Losslessness

Let m be a mass potential over Θ. Equivalence relation ≈ on Θ is said to be
lossless for m if each A ∈ Fm is a union of equivalence classes8 of ≈. Coarsening

7This differs slightly from Shafer’s use of term, [Shafer, 76], p116: he calls Θ′ itself a
coarsening.

8The union of an empty set of sets is taken to be the empty set.

14

(Θ′, τ) is said to be lossless for m if ≈τ is lossless for m. In this case define the
induced mass potential mτ over Θ′ by mτ (B) = m(τ−1(B)), for B ⊆ Θ′. The
sets of focal sets, Fm and Fmτ are in 1-1 correspondence and the corresponding
values of mass are the same. For A ⊆ Θ, m(A) = mτ (B) if there exists B ⊆ Θ′

such that A = τ−1(B), and otherwise m(A) = 0. Hence if we know τ and
mτ , without knowing m, we can recover m. Thus we have expressed the mass
potential m more compactly, by using the coarsened frame, without losing any
information.

In fact mτ can be viewed just as a shorter way of writing m if Θ′ is inter-
preted as a compact representation of Θ, so that θ′ ∈ Θ′ is taken to just be an
abbreviation of the set τ−1({θ′}).

Many operations on m can be done more efficiently using mτ , such as convert-
ing a mass function into a belief function, commonality function or plausibility
function.

If coarsening (Θ′, τ) is lossless for each of m1, . . . ,mk then it is lossless for
m1 ⊕ · · · ⊕ mk. The converse holds, for example, if the core of each of the
mass potentials is the same (which will be the case if we have conditioned each
mass potential by the combined core, prior to combination): if Cmi = Cmj for
i, j = 1, . . . , k then (Θ′, τ) is lossless for m1 ⊕ · · · ⊕mk iff it is lossless for each
of m1, . . . ,mk.

Calculation of mass potential induced by lossless coarsening Let (Θ′, τ)
be a lossless coarsening for mass potential m over Θ. We will assume that m
is represented either as an ordered list or as a binary tree. First, let us use the
ordering on Θ to define an ordering on Θ′. For each equivalence class E of ≈τ
let θE be its smallest element, and let Θ∗ be the set of all θE . The function τ
restricted to Θ∗ (call it τ∗) is a bijection between Θ∗ and Θ′, and so induces a
total ordering on Θ′. Equivalently, we may define the ordering by, for ϕ,ψ ∈ Θ′,
ϕ < ψ iff the smallest element of τ−1(ϕ) is less than the smallest element of
τ−1(ψ).

Each pair (A, r) (for A ∈ Fm) in the representation of m gets mapped
to pair (τ(A), r), where τ(A) can be efficiently calculated using the equation
τ(A) = τ∗(A ∩Θ∗). In the binary tree representation of mτ these pairs are in-
crementally added to the binary tree; in the ordered list representation, the pairs
will need to be sorted. The computation for the ordered list can be performed
in time at worst proportional to max

(
|Θ| log |Θ′|, |Fm| |Θ′|(log |Fm|+ log |Θ|)

)
;

the computation using the binary tree representation is a little more efficient,
being proportional to max(|Θ| log |Θ′|, |Fm| |Θ′| log |Θ|).

3.4.2 Coarsest lossless coarsening

For mass potential m over Θ define equivalence relation ≈m on Θ by θ ≈m ψ
if and only if for all A ∈ Fm, θ ∈ A ⇐⇒ ψ ∈ A. The equivalence relation
≈m can easily be shown to be lossless for m; in fact equivalence relation ≈ is

15

lossless for m if and only if ≈⊆≈m (i.e., θ ≈ ψ implies θ ≈m ψ); therefore ≈m

is the unique maximal lossless equivalence relation for m. Hence any coarsening
(Θ′, τ) with ≈τ =≈m (such as the canonical coarsening corresponding to ≈m)
can be considered a coarsest lossless coarsening since it has minimal Θ′.

Let M = {m1, . . . ,mk} be a set of mass potentials. Define equivalence
relation ≈M by θ ≈M ψ if and only if for all i = 1, . . . , k and for all A ∈ Fmi ,
θ ∈ A ⇐⇒ ψ ∈ A. Hence ≈M=

⋂k
i=1 ≈mi

, i.e., θ ≈M ψ iff for all i = 1, . . . , k,
θ ≈mi ψ. Clearly ≈M is the largest equivalence relation which is lossless for
m1, . . . ,mk. The canonical coarsening corresponding to ≈M (call it (ΘM, τM))
is a coarsest lossless coarsening for m1, . . . ,mk.

By the results of the previous subsection, (ΘM, τM) is lossless for m1⊕· · ·⊕
mk, and if the core of each mass potential is the same, it is the coarsest lossless
coarsening for m1 ⊕ · · · ⊕mk.

Finding coarsest lossless coarsening of a set of mass potentials Again
it will be assumed that the mass potentials are represented as either ordered
lists or binary trees. To calculate a coarsest lossless coarsening for M =
{m1, . . . ,mk} we determine the list of equivalence classes of ≈M. Throughout
the algorithm, structure L is a list of lists and will end up listing the equiva-
lence classes of ≈M. An inner list E of L is a list of integers (in fact numbers
1, . . . , |Θ|) in ascending order, and represents a subset of Θ; for example the
subset {θ4, θ7} is represented by the list [4, 7].

First we initialise L to be the one element list containing Θ, that is, [[1, 2, . . . , |Θ|]].
We then proceed as follows:

for i = 1, . . . , k
for Ai ∈ Fmi

for E in L
if both E ∩Ai and E −Ai are non-empty,

delete E from list and insert E ∩Ai and E −Ai

The number of operations needed for each E in the inner loop is proportional
to |E| log |Θ| so, since

∑
E∈L |E| = |Θ|, the total number operations for the

algorithm is proportional to |Θ|(log |Θ|)
∑k
i=1 |Fmi

|.

Hence calculating the coarsest lossless coarsening Θ′ of a number of mass
potentials m1 . . . ,mk over Θ, and converting each to a mass potential over Θ′

can be done in time proportional to |Θ|(log |Θ|)
∑k
i=1 |Fmi

|.

4 Conversion Between m, Bel and Q

Mass function m, its associated belief function Bel, and its associated common-
ality function Q all, in a sense, contain the same information, since it is possible
to reconstruct the other two from any one of the three. As mentioned above,

16

mass functions/potentials are often the most compact way of representing the
information, as often there are only a relatively small number of focal sets.
However some operations are more convenient with one of the other functions;
Dempster’s rule has a very simple form for commonality functions (see 2.4), so it
can sometimes be useful to convert to commonality functions before combining;
it is usually values of belief that in the end we’re interested in, and if we want
a large number of values of belief it can sometimes be easier to convert to the
belief function representation to read these off.

Therefore it is important to be able to move efficiently between the three
representations. This can be done with what is known as the Fast Möbius
Transformation (FMT) [Thoma, 89; 91; Kennes and Smets, 90a,b].

4.1 Relationships between the Various Functions

In section 2.1 we defined the belief function and the commonality function as-
sociated with a mass function; we can generalise these definitions to mass po-
tentials.

Let m be a mass potential over Θ. The associated unnormalised belief
function Belm is defined by, for A ⊆ Θ, Belm(A) =

∑
B⊆A m(B). The as-

sociated unnormalised commonality function Qm is defined by, for A ⊆ Θ,
Qm(A) =

∑
B⊇A m(B).

Belm and Qm will often be abbreviated to Bel and Q respectively, when it
is clear from the context which is the associated mass potential.

The mass potential m can be recovered from its associated unnormalised
belief function Bel by using the equation

For A ⊆ Θ, m(A) =
∑
B⊆A

(−1)|A−B|Bel(B),

and, similarly, m can be recovered from its associated unnormalised commonal-
ity function Q with the equation

For A ⊆ Θ, m(A) =
∑
B⊇A

(−1)|B−A|Q(B).

These results follow easily from lemma 2.3, page 48 of [Shafer, 76]. We can also
use exactly the same proof as that for Theorem 2.4 in [Shafer, 76] to give the
direct relationship between unnormalised belief function Bel and unnormalised
commonality function Q which correspond to the same mass potential:

Bel(A) =
∑
B⊆Ā

(−1)|B|Q(B)

and
Q(A) =

∑
B⊆A

(−1)|B|Bel(B̄)

for all A ⊆ Θ.

17

4.2 The Fast Möbius Transform

As usual we enumerate Θ as {θ1, . . . , θn}, and we’ll view subset A of Θ as an
n-digit binary number A where the most significant digit is 1 iff θ1 ∈ A. We
will use an n-dimensional array {0, 1} × · · · × {0, 1} of reals in [0, 1] which we
shall call v (see section 3.1.1) to represent each of the functions m, Bel and Q.
For example, if we are representing Q then the value of Q(A) will be placed in
position A of the array.

4.2.1 The conversion algorithms

Suppose we want to calculate unnormalised belief function Bel from mass po-
tential m. The most obvious algorithm involves, for each A ⊆ Θ, calculating
Bel(A) by looking up m(B) for each B ⊆ A, and summing them. The number
of additions required is

∑
A⊆Θ 2|A| =

∑n
j=1

(
n
j

)
2j = (2 + 1)n = 3n. However

this algorithm is very wasteful, as the same value of m(B) is looked up many
times.

Instead we will initialise the array v to mass potential m and pass the mass
m(A) up to all supersets of A.

(i) Algorithm for converting for all A ⊆ Θ v(A) to
∑
B⊆A v(B)

for θ ∈ Θ
for A ⊆ Θ− {θ}
v(A ∪ {θ}) := v(A ∪ {θ}) + v(A)

The outer loop could be implemented as a loop ‘for j = 1 to n’, with θ
being labelled θj . The inner loop could be implemented using nested two-valued
loops, each loop corresponding to an element θi of Θ and determining whether
θi is in A or not (extra control statements are also required).

Let vI(A) be the initial value of v(A) (the input) and let vO(A) be the final
value of v(A) (the output). For the algorithm to be correct we need that, for
all A ⊆ Θ, vO(A) =

∑
B⊆A vI(B). Now, for each A ⊆ Θ, vO(A) can be written

as a sum of terms vI(B) for various B (this can be proved using an obvious
induction); moreover it can be seen that vI(B) appears in this summation for
vO(A) iff B ⊆ A; finally it can be checked that each term vI(B) can appear at
most once in the term vO(A) — this is because there is a unique path that each
vI(B) follows to reach vO(A), for B ⊆ A. Hence vO(A) =

∑
B⊆A vI(B).

The correctness of very closely related algorithms (ii), (iii) and (iv) below
follows by similar arguments.

To calculate the function Bel from m we initialise the array v to m, and
apply algorithm (i) above: the array v will then be set to Bel.

18

(ii) Algorithm9 for converting for all A ⊆ Θ v(A) to
∑
B⊇A v(B)

for θ ∈ Θ
for A ⊆ Θ− {θ}
v(A) := v(A) + v(A ∪ {θ})

To calculate the function Q from m we initialise the array v to m, and apply
algorithm (ii) above: the array v will then be set to Q.

(iii) Algorithm for converting for all A ⊆ Θ v(A) to
∑
B⊆A(−1)|A−B|v(B)

for θ ∈ Θ
for A ⊆ Θ− {θ}
v(A ∪ {θ}) := v(A ∪ {θ})− v(A)

This can be used to calculate m from Bel: if we initialise the array v to Bel
and apply this algorithm, the final state of the array gives m, i.e., if vO is the
final state of the array, we will have, for all A ⊆ Θ, vO(A) = m(A).

Algorithm (iii) can also be used to convert between Bel and Q. If we initialise
the array v to Q, and apply the algorithm we can recover Bel from the output
vO by using the equation, for A ⊆ Θ, Bel(A) = |vO(Ā)|. This is because
Bel(Ā) =

∑
B⊆A(−1)|B|Q(B) = |

∑
B⊆A(−1)|A−B|Q(B)|.

If, on the other hand, we want to calculate the unnormalised commonality
function Q from the unnormalised belief function Bel we initialise array v by
setting v(A) = Bel(Ā), apply algorithm (iii) to get output vO. For A ⊆ Θ,
Q(A) = |vO(A)|.

(iv) Algorithm for converting for all A ⊆ Θ v(A) to
∑
B⊇A(−1)|B−A|v(B)

for θ ∈ Θ
for A ⊆ Θ− {θ}
v(A) := v(A)− v(A ∪ {θ})

To calculate m from Q we initialise v with Q and apply the algorithm to
give m.

4.2.2 The time needed for conversion

The number of additions used by each of the algorithms is n2n−1 where n = |Θ|,
and the number of other basic operations needed for the algorithm (such as
incrementing of loop counters) is of similar order, so one might use this figure

9This is clearly very strongly related to algorithm (i); in fact one might even consider it to
be actually the same algorithm, if, in the binary representation of a set, a 1 is reinterpreted
as meaning that the element is not in the set (rather than that it is in the set).

19

as a measure of the complexity. However, to be consistent with the assumptions
in section 3 (see 3.1.2) we need to say that accessing a value of v takes time
proportional to n, so overall the time needed is proportional to n22n.

4.2.3 Use of conditioning by core and lossless coarsening

Clearly reducing the size of |Θ| can hugely improve the efficiency of the above
algorithms. For example if we manage to reduce it by 10 elements then it makes
the algorithm more than 1000 times faster. Conditioning by the combined core
(sections 3.2 and 3.3) could be used when we know we are later going to combine
with a set of other mass potentials; lossless coarsening (section 3.4) could be
used as long as the number of focal sets is not huge. For either of these methods
to be efficient, we need that the list of focal sets is also stored in a more direct
way than the n-dimensional array, e.g., using the ordered list or binary tree
representations.

5 Exact Combination on Frames

As mentioned earlier, the central computational problem of Dempster-Shafer
theory is calculating the combination of a number of mass functions. It is
assumed that the input is a number of mass functions m1, . . . ,mk, and we are
interested in the combination m = m1⊕· · ·⊕mk, especially the associated values
of belief (values of Belm) for various sets of interest.

Here we look at some exact methods. Further methods are described in
sections 6,7, 9 and 10.

Section 5.1 considers an obvious approach to the problem; section 5.2 de-
scribes the use of the Fast Möbius Transform to compute the combination.
Section 5.3 takes a different approach, computing directly a value of combined
belief, without first computing the combined mass function.

We’ll actually consider the slightly more general problem of calculating the
combination of a number of mass potentials. Recall a mass potential is defined
to be a function from 2Θ to [0, 1], and a mass function is a mass potential m
such that m(∅) = 0 and

∑
A∈2Θ m(A) = 1.

The unnormalised combination m1 ⊗m2 of mass potentials m1 and m2 over
Θ is defined by, for A ⊆ Θ,

(m1 ⊗m2)(A) =
∑

B,C :B∩C=A

m1(B)m2(C).

Define the combination m1 ⊕ m2 of m1 and m2 to be the normalisation of
m1 ⊗ m2 (when this is proper): (m1 ⊕ m2)(∅) = 0, and for A 6= ∅, (m1 ⊕
m2)(A) = K1,2 (m1⊗m2)(A) where the normalisation constant K1,2 is given by
K−1

1,2 =
∑
A 6=∅(m1 ⊗m2)(A) which equals

∑
B∩C 6=∅ m1(B)m2(C).

20

m1 ⊕m2 is a mass function, and when m1 and m2 are mass functions this
definition agrees with the standard definition of Dempster’s rule (given in section
2.4).

Both⊗ and⊕ are commutative and associative. For mass potentials m1, . . . ,mk,
their unnormalised combination

⊗k
i=1 mi can be shown to be given by

k⊗
i=1

mi(A) =
∑

B1...,Bk :B1∩···∩Bk=A

m1(B1) · · ·mk(Bk).

As one would hope,
⊕k

i=1 mi is the normalisation of
⊗k

i=1 mi, which means
that when we’re calculating

⊕k
i=1 mi we can always work with unnormalised

combination, and leave normalisation until the end. Also, the unnormalised
commonality function of

⊗k
i=1 mi is

∏k
i=1 Qmi

.

5.1 Combination Using Mass Potentials

We suppose that we are given mass potentials m1, . . . ,mk over Θ, which are
represented as ordered lists or binary trees (see section 3.1), and we wish to cal-
culate their combination m1⊕· · ·⊕mk. This combined mass function produced
can then be used, for example, to calculate the values of combined belief for sets
of interest.

The method described in section 5.1 is a refinement of the obvious algorithm
sketched in [Shafer, 76], chapter 3.

5.1.1 Combination of two mass potentials

Suppose we wish to calculate m1 ⊕m2 for mass potentials m1 and m2 over Θ.
We will proceed by calculating the unnormalised combination m1 ⊗ m2, and
then normalise.

To calculate m1⊗m2 we can use algorithms of the following form (recall Fm

is the set of focal sets of mass potential m): First initialise the appropriate data
structure. Then, for each A ∈ Fm1 and B ∈ Fm2 , compute A∩B and m(A)m(B)
and add the pair

(
A ∩B,m(A)m(B)

)
to the data structure for m1 ⊗m2.

The initialisation step and the definition of “add” here depends on the data
structure we use to store the combined mass potential.

If we use a binary tree for m1 ⊗m2 then we incrementally build the binary
tree from nothing; adding

(
A ∩ B,m(A)m(B)

)
to the tree means here first

finding if there is a leaf (A ∩ B, r) for some r; if there is then we replace r by
r+m(A)m(B); if there is no such leaf, we insert a leaf

(
A∩B,m(A)m(B)

)
along

with the appropriate extra internal node. Computing the combination m1⊕m2

hence can be performed in time proportional to |Fm1 | |Fm2 | |Θ|.
If, on the other hand, we want to use an ordered list to represent m1 ⊗m2,

we can incrementally build up an ordered list from an initial empty list, adding

21

the pair
(
A ∩ B,m(A)m(B)

)
to the list in the correct position, in a similar

way as for the binary tree. The disadvantage of this method is that finding the
correct place to add the pair is a little more time-consuming than for a binary
tree. An alternative is to incrementally build up an unordered list, adding(
A ∩ B,m(A)m(B)

)
to the end of the list, and then afterwards sort the list.

This has roughly similar complexity to the algorithm with a binary tree, the
disadvantage being that it uses more space, proportional to |Fm1 | |Fm2 | |Θ|.

Because of these disadvantages of the ordered list representation of m1⊗m2

it may well often be better to use the binary tree representation, and then, if
we want the output to be stored as an ordered list, to convert afterwards to the
ordered list representation.

If the number of focal sets, for each of m1 and m2, is close to the maximum
value of 2|Θ| then the above methods need time roughly proportional to |Θ|22|Θ|.
This is much worse that the FMT method described in section 5.2. However, if
both mass potentials only have a small number of focal sets, this simple approach
will be much faster than the FMT method.

5.1.2 Combination of several mass potentials

Suppose we are given a set of mass potentials over Θ, and we wish to calculate
their combination; we assume that they are represented as ordered lists or binary
trees. Before proceeding further it’s a good idea to find the combined core
and condition all the mass potentials by it (see sections 3.2 and 3.3), as this
can reduce the number of focal sets. We can also find the coarsest common
refinement Θ′, and coarsen to this frame (see 3.4), but this is of limited use
here, as it doesn’t reduce the number of focal sets; however it does tell us that
the number of possible focal sets of the combined mass potential is at most 2|Θ

′|,
which, if Θ′ is fairly small, can give us useful information about how long the
calculation will take.

The next step is to order the resulting mass potentials as m1, . . . ,mk. As we
shall see, the choice of ordering can make a huge difference. We use the algorithm
(section 5.1.1) for combining two mass potentials k − 1 times to calculate first
m1⊗m2, and then (m1⊗m2)⊗m3, and so on, until we have calculated m1⊗· · ·⊗
mk as (m1⊗ · · · ⊗mk−1)⊗mk. Finally we normalise to produce m1⊕ · · · ⊕mk.

For i = 1, . . . , k, let Fi = Fmi
, the set of focal sets of mi, and let F1,...,i

be the set of focal sets of m1 ⊗ · · · ⊗mi; abbreviate the set of focal sets of the
whole unnormalised combination, F1,...,k to just F . The time needed for the
computation is proportional to R = |Θ|

∑k−1
i=1 |F1,...,i| |Fi+1|.

An upper bound for |F1,...,i| is
∏i
j=1 |Fj |, so R ≤ |Θ|

∑k−1
i=1

∏i+1
j=1 |Fj | which

equals |Θ|(1 + U
|Fk|)

∏k
j=1 |Fj |, where U = 1 + 1

|Fk−1| + 1
|Fk−1|×|Fk−2| + · · · +∏k−1

i=3
1
|Fi| . Assuming that each mi has at least two focal sets (which we can

ensure e.g., by first combining all the mass potentials with only one focal set,

22

by taking the intersection of these sets, and then conditioning one of the other
mass potentials by this intersection), U ≤ 2 so an upper bound for R is |Θ|(1 +

2
|Fk|)

∏k
i=1 |Fi| which is at most 2|Θ|

∏k
i=1 |Fi|.

Example Let Θ = {θ1, . . . , θn}, let k = n and for i = 1, . . . , k, define mass
function mi by mi(Θ) = 0.5 and mi(Θ−{θi}) = 0.5. In this case we indeed have
|F1,...,i| =

∏i
j=1 |Fj | = 2i, and |F| has the maximum possible value 2n = 2k.

Here R can be seen to be n(2k+1 − 4).
From this example it can be seen that this method of computing the combi-

nation can be as bad as exponential in min(|Θ|, k).
However, the last example is rather an extreme case, and usually the number

of focal sets of the whole combination |F| will be much less than its maximum
possible value

∏k
i=1 |Fi| (although it may well be still typically exponential in

k). Usually a better upper bound for R is

|Θ|
(
k−1
max
i=1

|F1,...,i|
) k∑
i=2

|Fi|.

We would tend to expect |F1,...,i| to be an increasing function of i (usually
sharply increasing), especially if before combination we conditioned all the mass
potentials by their combined core, since more combinations will tend to produce
more focal sets. It is always monotonically increasing if, for example, Θ is in
each Fi. (However, as we will shortly see, it is not always the case that |F1,...,i|
is an increasing function of i, and it is not even always possible to reorder the
mass potentials to make it increasing in i.)

If |F1,...,i| is an increasing function of i then an upper bound for R is
|Θ| |F|

∑k
i=2 |Fi|. If |F1,...,i| is a sharply increasing function of i, and none of

the sets Fi are too large, we would expect the last term (i.e., that corresponding
to the last combination) to be dominant, which is less than |Θ| |F| |Fk|.

This computation of the combination clearly takes time at least proportional
to |Θ| |F|; often when the sets Fi are not large, the computation time will be
fairly closely tied to this term |Θ| |F|.

The order of the mass potentials That the order of the mass potentials
can make a huge difference is illustrated by adding to the previous example
another (Bayesian) mass potential whose focal sets are all the singletons {θj}
for θj ∈ Θ.

If this mass potential is added to the end of the list of mass potentials then
the computation is exponential in n; if it is added to the beginning of the list,
the computation is cubic in n (= k − 1) (and could even be made quadratic)
since the number of focal sets, |F1,...,i|, never exceeds n+ 1.

23

This example also shows that |F1,...,i| is not always increasing in i, since
|F| = |F1,...,k| = n + 1, but when the Bayesian mass potential is added at the
end, |F1,...,k−1| is 2n.

A natural question to ask is whether we can always reorder the mass po-
tentials to ensure that |F1,...,i| is monotonically increasing in i. The following
example emphatically shows that we cannot always do so:

For i = 1, . . . , n, let mi be such that Fi = {{θi}} ∪ 2Θ−{θi}. Here |Fi| =
2n−1 + 1 and F just consists of the empty set and the singletons, so |F| =
n+ 1. |F1,...,i| = 2n−i + i so it is exponentially decreasing in i. The example is
symmetrical so changing the order of the mass potentials makes no difference.

A heuristic method for deciding order of mass potentials Since the
order in which we combine a set of mass potentials can be so important, this
raises the question of how we choose to order them. One fairly simple heuristic
method which deals with the problem of the Bayesian mass function in the
penultimate example is to calculate, for each mass potential m, the average
size of its focal sets, that is 1

|Fm|
∑
A∈Fm

|A|; we order the mass potentials as
m1, . . . ,mk, with for i < j the average size of focal sets for mi being not more
than that for mj . This method is easy and efficient to implement; however, it
is not clear how well it does generally at finding an order close to the optimal
one.

Direct computation An alternative to this incremental method is to gener-
alise the algorithm given for combining two mass potentials, labelling the mass
potentials m1, . . . ,mk:

For each i = 1, . . . k andAi ∈ Fmi
, add pair (A1∩· · ·∩Ak,m1(A1) · · ·mk(Ak))

to the data structure for the combination.
However this certainly does not appear to be usually the best way of per-

forming the combination: the number of operations needed is at least propor-
tional to |Θ|

∏k
i=1 |Fmi

| The efficiency can be seen to be, at best, similar to the
incremental algorithm given above, and, at worst, exponentially worse.

5.2 Calculation of Dempster’s Rule using Fast Möbius
Transform

The Fast Möbius Transform can be used to calculate the combination of a
number of mass potentials over Θ.

As with previous use of the Fast Möbius Transform, reducing the size of the
frame by (i) conditioning by the combined core of the mass functions (see 3.3)
and (ii) coarsest lossless coarsening (see 3.4) will in some cases hugely improve
the efficiency of the calculation, if we have a representation for the focal sets of
each mass potential (e.g., in an ordered list or binary tree), and if the number

24

of focal sets of each mass potential isn’t too large. Note that lossless coarsening
can be used in two ways: firstly we can find the coarsest lossless coarsening for
each individual mass potential, which makes the conversion to commonalities
(see below) more efficient; secondly, we can find the coarsest lossless coarsening
for the set of mass potentials, which can make other steps faster as well.

We use Fast Möbius Transform algorithm (ii) on each mass potential mi,
i = 1, . . . , k, to convert each to its associated unnormalised commonality func-
tion Qi. We then calculate unnormalised commonality function Q by pointwise
multiplication from the Qis: for all A ⊆ Θ let Q(A) =

∏k
i=1 Qi(A). We then

can calculate the mass potential m associated with Q by using Fast Möbius
Transform algorithm (iv). Finally we can normalise m to give the combination
m1 ⊕ · · · ⊕mk.

The first stage requires kn2n−1 additions; the pointwise multiplication stage
requires (k − 1)2n multiplications; the calculation of m from Q requires n2n−1

additions, and the normalisation uses one division and 2n − 1 multiplications.
Hence the number of operations is of order kn2n. We’re also assuming (see
3.1.2) that it takes time proportional to n to access an element of one of the
n-dimensional arrays, so overall, the algorithm takes time proportional to kn22n.

If we wanted instead of the combined mass function, the belief function
associated with m1⊕· · ·⊕mk, we could have converted Q directly to the unnor-
malised belief function, using e.g., Fast Möbius Transform algorithm (iii), and
then normalised. This doesn’t change the number of operations required. Also
we could instead have as inputs belief functions Bel1, . . . ,Belk and converted
these directly to Q1, . . . ,Qk.

Mass-based or Fast Möbius Transform?

A natural question to ask is, for a given problem, how do we decide which
algorithm to use. Sometimes it’s clear: if we need the values of combined belief
for all 2n subsets of Θ then, the FMT is better; likewise if one of the mass
potentials has a huge number of focal sets (close to 2n). A nice feature of the
Fast Möbius Transform algorithm is that one can accurately estimate how long
it will take, in terms of the size of the frame n and number of mass potentials
k. With the mass-based algorithm, we just have crude upper bounds. Clearly
if these are better than the predicted time for the FMT then we should use the
mass-based algorithm. The complexity of the mass-based algorithm is strongly
tied to the number of focal sets of the combined belief function; if it can be
shown that this is much smaller than 2n then again, the mass-based method is
likely to be much faster.

However, generally we will probably not be able to tell beforehand which
of the two is better. For this case, one very simple idea is first to calculate
approximately how long the Fast Möbius Transform algorithm will take; then
we spend that long attempting to use the mass-based method; if in that time

25

we don’t finish, we use the Fast Möbius Transform algorithm. This, to some
extent, combines the advantages of both: it takes at most twice as long as the
Fast Möbius Transform, but when the mass-based method is the faster method,
it behaves similarly to the latter.

5.3 Direct Calculation of Belief

The idea behind this approach is to calculate a value of combined belief directly
without first calculating the combined mass function.

For this method it is convenient to use source triples (see sections 2.2 and
2.4.2) to represent the mass functions. The combined belief function Bel, from
source triples (Ωi,Pi,Γi), for i = 1, . . . , k is given by: for A ⊆ Θ, Bel(A) =
PDS({ω ∈ Ω : Γ(ω) ⊆ A}). It then follows that

Bel(A) =
P′(Γ′(ω) ⊆ A)− P′(Γ′(ω) = ∅)

1− P′(Γ′(ω) = ∅)
,

where P′(Γ′(ω) ⊆ A) is shorthand for P′({ω ∈ Ω× : Γ′(ω) ⊆ A}), and recall
that Γ′(ω) =

⋂k
i=1 Γi(ω(i)) and P′(ω) =

∏k
i=1 Pi(ω(i)), for ω ∈ Ω×. Hence

the problem of calculating values of Dempster-Shafer belief can be reduced to
calculating P′(Γ′(ω) ⊆ A) for various A ⊆ Θ, since P′(Γ′(ω) = ∅) is given by
setting A = ∅.

We can think of the product set Ω× = Ω1 × · · · × Ωk geometrically as a k-
dimensional cube of dimension 1, which is split into hyper-rectangles ω, where
ω is of dimensions P1(ω(1))× · · · ×Pk(ω(k)), and so has (hyper-)volume P′(ω).
Calculating P′(Γ′(ω) ⊆ A) then amounts to finding the volume of the region
R = {ω : Γ′(ω) ⊆ A}. We find this volume by recursively splitting the region
into disjoint parts, finding the volumes of these regions, and summing them.

This method is only useful if the number of focal sets of each input mass
function, or |Ωi|, is small (e.g. of order |Θ| rather than of order 2|Θ|).

The approach described here is a simple generalisation of the method de-
scribed in section 4.1 of [Wilson, 89] for the combination of simple support
functions (see also [Wilson, 92c], which includes as well implementation details
and experimental results).

There are strong connections between this approach and ATMS-style meth-
ods for calculating combined belief e.g., [Laskey and Lehner, 89; Provan, 90;
Kohlas and Monney, 95] and chapter 6 in this volume, on probabilistic argu-
mentation systems; however the view we describe here is perhaps more direct,
and with the exception of the latter, more general, as it allows arbitrary input
mass functions. So, for the sake of concision, this chapter does not include a
description of these ATMS-style approaches.

We will continue with this geometric view. In section 5.3.2 we briefly indicate
how the ideas can also be thought of in a simple algebraic way.

26

5.3.1 Recursive splitting up of regions in Ω×

Region R can be seen to have a particular structure. Γ′(ω) ⊆ A if and only if
for all θ ∈ Ā, Γ′(ω) 63 θ, which holds if and only if for all θ ∈ Ā there exists
i ∈ {1, . . . , k} such that Γi(ω(i)) 63 θ. Therefore

R =
⋂
θ∈Ā

k⋃
i=1

Riθ,

where Riθ = {ω ∈ Ω× : Γi(ω(i)) 63 θ}. Region Riθ is a one-dimensional slice of
Ω×. It can be written as

Ω1 × · · · × Ωi−1 × {ωi ∈ Ωi : Γi(ω(i)) 63 θ} × Ωi+1 × · · · × Ωk,

and so can be thought of as just a subset of Ωi. The volume of Riθ, i.e., P′(Riθ),
is Pi({ωi ∈ Ωi : Γi(ωi) 63 θ}) which equals Beli({θ}), where Beli is the belief
function associated with the ith source triple.

Calculating Volume of Simple Expressions and Simplifying

The method we describe is based on recursively breaking the expression10
⋂
θ∈Ā

⋃k
i=1R

i
θ

into expressions of a similar form until they are simple enough for their volume
to be easily calculated. Before giving the recursive step, we list a number of
ways of directly calculating the volume of simple expressions of this form, and
ways of simplifying expressions.

Write R as
⋂
θ∈B

⋃
i∈σθ

Riθ where B is set to Ā and for each θ ∈ B, σθ is set
to {1, . . . , k}; however, as the algorithm progresses, it will generate expressions
of this form with smaller B and σθ. Also write |R| for the volume of R.

(a) If, for some θ, σθ = ∅ then R = ∅ so its volume |R| = 0. Similarly, if for
some θ, each Riθ = ∅ (for each i ∈ σθ) then |R| = 0.

(b) If B = ∅ then |R| = 1.

(c) If |B| = 1 then |R| can be calculated easily, writing B as {θ}, using
1 − |R| =

∏
i∈σθ

(1 − |Riθ|) =
∏
i∈σθ

Pli({θ}) where Pli is the plausibility
function associated with the ith source triple.

(d) If for some θ and i, Riθ = ∅ then we can omit that i from σθ.

(e) If for some θ and i ∈ σθ, Riθ = Ω× then
⋃
j∈σθ

Rjθ = Ω× so θ can be
omitted from B without changing (the set represented by) R.

(f) Suppose, for some θ, τ ∈ B, that σθ ⊆ στ and for each i ∈ σθ, Riθ ⊆ Riτ .
Then τ can be omitted from B without changing R.

10Note that although each Ri
θ and each expression represents a set, for the purpose of the

algorithm we are regarding the expressions as formal expressions where each Ri
θ is treated

as an atomic symbol. However, the soundness of the rewriting rules such as (a)–(f) below is
checked, of course, by reference to the subsets that they refer to.

27

Splitting

This is the basic recursive step in the method. Before applying this step we first
check to see if |R| can be calculated immediately with (a)–(c) or R simplified
with (d)–(f). If R can be simplified we do so, and check (a)–(f) again. If none
of these can be applied we check to see if we can factor (see below); if not we
split .

To split R =
⋂
θ∈B

⋃
i∈σθ

Riθ involves first choosing an l in some σθ and
then splitting by l. Splitting by l involves slicing R into |Ωl| disjoint regions
{Rωl

: ωl ∈ Ωl} where Rωl
is defined to be {ω ∈ R : ω(l) = ωl}. Each Rωl

can
be written as R′ωl

× {ωl} where

R′ωl
=

⋂
θ∈B∩Γl(ωl)

⋃
i∈σθ−{l}

Riθ,

which is of the same form as R, but a smaller expression, so we can recursively
repeat the process to calculate |R′ωl

|. Finally |R| can be calculated as∑
ωl∈Ωl

Pl(ωl) |R′ωl
|.

Note that if B∩Γl(ωl) is much smaller than B then the expression for R′ωl
is

very much simpler than that for R. Therefore one natural heuristic for choosing
which l to split by, is to choose l such that

∑
ωl∈Ωl

|B ∩ Γl(ωl)| is minimal.

Factoring

This is another recursive step; it simplifies the expression much more than
splitting typically does, but can only sometimes be applied.

Suppose there exists non-empty proper subset C of B such that
⋃
θ∈C σθ ∩⋃

θ∈B−C σθ = ∅. We then write R as R1∩R2 where factor R1 =
⋂
θ∈C

⋃
i∈σθ

Riθ
and factor R2 =

⋂
θ∈B−C

⋃
i∈σθ

Riθ. The point of this is that |R1 ∩R2| = |R1|×
|R2| because no i appears in both expressions R1 and R2. We can recursively
use the method (using simplifying, splitting and factoring) to compute |R1| and
|R2|, and compute the volume of R as |R1| × |R2|.

5.3.2 An algebraic view of the approach

We briefly sketch another view of the approach of 5.3.1, based on rearranging
multiple summations of mass functions. Let mi be the mass function associated
with the ith source triple, so that, for C ⊆ Θ, mi(C) = Pi(Γi(ωi) = C). The
term P′(Γ′(ω) ⊆ A) can be shown to be equal to∑

A1,...,Ak:
A1∩···∩Ak⊆A

m1(A1) · · ·mk(Ak).

28

For example, Splitting by k corresponds to writing this multiple summation as∑
Ak : mk(Ak) 6=0

mk(Ak) SkAk
.

Here, SkAk
is the multiple summation∑

m1(A1) · · ·mk−1(Ak−1)

where the summation is over all sequences of sets A1, . . . , Ak−1 such that their
intersection

⋂k−1
i=1 Ai is a subset of A ∪Ak.

The |Fmk
| internal summations can then be recursively split until the sum-

mations can be easily evaluated.

6 Approximate Methods for Calculating Com-
bined Belief

Because of the computational problems of exact combination of Dempster-Shafer
belief, it is natural to consider approximate techniques. In this section, a number
of such techniques are briefly discussed.

6.1 Bayesian Approximation

Define the Bayesian approximation [Voorbraak, 89; see also Joshi et al , 95] m
of a mass function m to be Bayesian, i.e., all its focal sets are singletons, and
for θ ∈ Θ,

m({θ}) = λQm({θ}) = λ
∑
A3θ

m(A),

where the normalising constant λ is given by

λ−1 =
∑
θ∈Θ

Qm({θ}) =
∑
A⊆Θ

m(A)|A|.

The term λ−1 can thus be viewed as the mass-weighted average of the sizes of
the focal sets.

Naturally, the Bayesian approximation Bel of belief function Bel is then
defined to be the belief function associated with m, where m is the mass function
associated with Bel; we can also define Pl in an analogous way; we have Pl = Bel.

A nice property of Bayesian approximation is that the operation commutes
with combination: the Bayesian approximation of the combination of a number
of mass functions m1, . . . ,mk is the same as the combination of the Bayesian
approximations of the mass functions, i.e., m1 ⊕ · · · ⊕mk equals m1⊕ · · ·⊕mk.

29

This follows easily from the simple multiplicative form of Dempster’s rule for
commonalities (see section 2.4).

The computation of the combination of the Bayesian approximations can
be performed quickly, in time proportional to |Θ|, and this can be used to
approximate the combination of the input mass functions. The key issue is how
good an approximation it is. We’ll first consider its use for approximating the
combined plausibility, and then for approximating combined belief.

Let Pl be the plausibility function associated with m = m1 ⊕ · · · ⊕mk, and
let Pl be the plausibility function associated with m. For singleton set {θ}, with
θ ∈ Θ, Pl({θ}) = Q({θ}), and,

Pl({θ}) = m({θ}) =
Q({θ})∑
ψ∈Θ Q({ψ})

where Q = Qm is the commonality function associated with m.
We thus have

Pl({θ})
Pl({θ})

= λ−1 =
∑
ψ∈Θ

Q({ψ}) =
∑
A⊆Θ

m(A)|A|,

the mass-weighted average of the sizes of the focal sets. This lies between
1 and |Θ|. It is clear, then, that even for singletons it can be a very poor
approximation, out by a factor of 2 even if the average size of the focal sets (of
m) is as small as 2. Note, however, that the Bayesian approximation does give
correct values for the relative values of plausibilities of singletons: for θ, ψ ∈ Θ,

Pl({θ})
Pl({ψ})

=
Pl({θ})
Pl({ψ})

.

Also, for singleton sets {θ}, Pl({θ}) is not larger than Pl({θ}); this result
does not generalise to arbitrary sets A ⊆ Θ, as the following example shows11:

Label Θ as {θ1, . . . , θn} and let A = {θ1, . . . , θn−1}. Define mass function m
by m(A) = 1

n and m({θn}) = n−1
n . Then we have Pl(A) = 1

n and Pl(A) = 1
2 so

Pl(A)/Pl(A) = 2
n which is close to 0 for large n.

Bel also often approximates Bel poorly. If {θ} is not a focal set then Bel({θ})
will be 0; however the Bayesian approximation will give a non-zero value to {θ}
so long as there is some focal set containing θ; an extreme example is a vacuous
belief function (so that Bel(A) = 1 iff A = Θ and otherwise Bel(A) = 0) over a
frame Θ of two elements {θ, ψ}. We then have Bel({θ}) = 0 but Bel({θ}) = 1

2 .

Clearly what is crucial for the Bayesian approximation to be a good approx-
imation of combined belief (or plausibility) is if the combination is very close to
being Bayesian. This can easily happen, but it is certainly not necessarily the
case even for very large k (the relative sizes of k and |Θ| are often relevant).

11This means that the Bayesian approximation of a belief function Bel is not in the set of
compatible measures P associated with Bel (see section 8.1).

30

6.2 Storing Fewer Focal Sets

Another approximate method, suggested by [Tessem 93], is to use the basic
iterative algorithm for combining with Dempster’s rule (see section 5.1), but, at
each stage, if the number of focal sets becomes too large, to store just some of
them, for example, those with largest mass.

Although it appears from the experimental results of [Tessem, 93] that this
can sometimes yield reasonable results, there is an obvious very serious prob-
lem. It appears that the number of focal sets of the combination of k mass
functions over Θ will tend to grow exponentially in the minimum of |Θ| and k.
In which case, either such a method will be exponential (if we keep a sizeable
proportion of the focal sets) or we’ll only keep a very small proportion of the
focal sets, in which case it seems unlikely that we’ll usually be able to keep a
representative set. The related approaches described in [Bauer, 97] suffer from
the same problem.

For example, let Θ = {θ1, . . . , θ20}, and, for i = 1, . . . , 20, define mi by
mi(Θ − {θi}) = 1

3 and mi(Θ) = 2
3 . There are more than a million focal sets of

the combined mass function m = m1 ⊕ · · · ⊕ m20. Even if we were storing at
each stage the set F ′ of 1000 focal sets with largest masses, at the end of the
calculation, the total mass covered is less than 0.05, i.e.,

∑
A∈F ′ m(A) < 0.05.

For larger k and |Θ| the situation gets much worse.
It therefore seems unlikely that this type of method could generally yield

good approximations of values of Bel when k and |Θ| are not small.

6.3 Using Direct Computation of Belief Algorithm to Give
Bounds

The algorithm of 5.3.1 involves recursively breaking down an expression (rep-
resenting a region in a multi-dimensional space) into simpler ones until their
hyper-volumes can be calculated. At each stage, we can easily compute an up-
per bound for the contribution an expression will make to the volume of the
original expression (and 0 is a lower bound). In this way the algorithm can be
used to give upper and lower bounds for the volume of region R, which are im-
proved as the algorithm progresses, with the upper and lower bounds eventually
becoming equal when the algorithm is complete. However, the volumes of some
expressions are much harder to calculate than others, so if we wish, we could
terminate the algorithm early, without computing all the volumes, and return
the lower and upper bounds for the volume of R.

For example if we split R by l, slicing R into disjoint regions {Rωl
: ωl ∈ Ωl}

it may happen that the volume of one of these sub-regions, say Rω1
l

is hard to
compute, but we find that all the others are easily calculated, and they sum
to (say) 0.4. If Pl(ω1

l) is, say, 0.05, then the volume of R must then lie in the
interval [0.4, 0.45].

Recall that the volume of R is P′(Γ′(ω) ⊆ A). In the same way we can get

31

upper and lower bounds for P′(Γ′(ω) = ∅), and use the two sets of bounds to
get upper and lower bounds for Bel(A).

However, this method may suffer from similar problems to the previous one
(6.2): it may not be possible to get a good approximation of belief in a reasonable
amount of time.

6.4 Other Approximate Methods

[Gordon and Shortliffe, 85] considers the problem of combining simple support
functions when the focal sets are either members of, or complements of members
of, a hierarchical hypothesis space. The latter is a set of subsets of the frame
containing ∅ and such that for any two sets in it, their intersection is either
empty or one of the sets. Earlier [Barnett, 81] had successfully tackled the
simpler problem where the focal sets of the simple support functions are either
singletons or complements of singletons (or, of course, the frame Θ). Gordon and
Shortliffe used an approximation for their problem; however, the approximation
is not always a good one (see [Wilson, 87]), and, in any case, combined belief
can be calculated efficiently exactly [Shafer and Logan, 87; Wilson, 87; 89].

[Dubois and Prade, 90] discuss the approximation of an arbitrary belief
functions by a consonant belief function, i.e., one whose focal sets are nested.
However, as pointed out in [Tessem, 93], this approximation is not well suited
to the calculation of combined belief.

7 Monte-Carlo Algorithms for Calculating Com-
bined Belief on Frame

It seems that the exact methods described above (section 5) are probably only
useful for relatively small problems. An alternative approach is to use Monte-
Carlo algorithms; combined Dempster-Shafer belief is estimated using a large
number L of trials of a random algorithm; each trial gives an estimate of belief
(a very poor one: either 0 or 1); an average of the estimates of all the trials
converges to the correct value of belief as L gets large. In this way, much faster
algorithms for finding combined belief (up to a given degree of accuracy) are
possible, almost linear in the size of the frame for the algorithms given in 7.3
and 7.4.1.

It is assumed that we’re interested in calculating values of combined belief.
However, since there are exponentially many subsets of Θ, for large Θ it will not
be feasible to calculate the belief in all of them. Instead, it is assumed that, for
a fairly small number of important sets A ⊆ Θ, we are interested in calculating
Bel(A). To simplify the presentation of the algorithms we just consider one set
A, but the extension to a number of sets is straight-forward.

32

The algorithms involve random sampling so it is natural to express them in
terms of source triples, which separate out the underlying probability distribu-
tion. If we are given mass functions to combine, we just have to convert each to
a source triple (which is associated with the mass function; see section 2.2). For
the reader’s convenience the basic definitions given in 2.2 and 2.4.2 are repeated
here.

A source triple over Θ is a triple (Ω,P,Γ) where Ω is a finite set, P is a strictly
positive probability distribution over Ω and Γ is a function from Ω to 2Θ−{∅}.
Associated with a source triple is a mass function, and hence a belief function,
given respectively by m(A) =

∑
ω : Γ(ω)=A P(ω) and Bel(A) =

∑
ω : Γ(ω)⊆A P(ω).

Dempster’s rule for source triples is a mapping sending a finite set of source
triples {(Ωi,Pi,Γi), for i = 1, . . . , k}, to a triple (Ω,PDS,Γ), defined as follows.
Let Ω× = Ω1 × · · · × Ωk. For ω ∈ Ω×, ω(i) is defined to be its ith component
(sometimes written ωi), so that ω = (ω(1), . . . , ω(k)). Define Γ′: Ω× → 2Θ

by Γ′(ω) =
⋂k
i=1 Γi(ω(i)) and probability distribution P′ over Ω× by P′(ω) =∏k

i=1 Pi(ω(i)), for ω ∈ Ω×. Let Ω be the set {ω ∈ Ω× : Γ′(ω) 6= ∅}, let Γ be Γ′

restricted to Ω, and let probability distribution PDS over Ω be P′ conditioned
on Ω, so that for ω ∈ Ω, PDS(ω) = P′(ω)/P′(Ω). The factor 1/P′(Ω) can be
viewed as a measure of the conflict between the evidences.

The combined measure of belief Bel over Θ is given, for A ⊆ Θ, by Bel(A) =
PDS({ω ∈ Ω : Γ(ω) ⊆ A}), which we abbreviate to PDS(Γ(ω) ⊆ A).

As usual, it can be helpful to pre-process the source triples by conditioning
each by their combined core (see 3.3). Lossless coarsening (see 3.4) can also
sometimes be helpful.

7.1 A Simple Monte-Carlo Algorithm

Dempster’s set-up [Dempster, 67] suggests a natural Monte-Carlo algorithm for
calculating belief (or other related quantities). Section 7.1 is based on [Wilson,
91], but variations of the same idea are given in [Kämpke, 88; Pearl, 88; Wilson,
89; Kreinovich et al ., 92].

Since, for A ⊆ Θ, Bel(A) = PDS(Γ(ω) ⊆ A), to calculate Bel(A) we can
repeat a large number of trials of a Monte-Carlo algorithm where for each trial,
we pick ω with chance PDS(ω) and say that the trial succeeds if Γ(ω) ⊆ A,
and fails otherwise. Bel(A) is then estimated by the proportion of the trials
that succeed. The random algorithms described in 7.1, 7.2 and 7.3 all involve
simulating PDS. The most straight-forward way is to pick ω with chance PDS(ω)
by repeatedly (if necessary) picking ω ∈ Ω× with chance P′(ω) until we get an
ω in Ω. Picking ω with chance P′(ω) is easy: for each i = 1, . . . , k, we pick
ωi ∈ Ωi with chance Pi(ωi) and let ω = (ω1, . . . , ωk).

For each trial:
for i = 1, . . . , k

33

pick ωi ∈ Ωi with chance Pi(ωi)
let ω = (ω1, . . . , ωk)
if Γ(ω) = ∅ (so ω /∈ Ω)

then restart trial
else if Γ(ω) ⊆ A

then trial succeeds (i.e., gets the value 1)
else trial fails (i.e., gets the value 0)

The time that the algorithm takes to achieve a given accuracy (with a given
high probability) is roughly proportional12 to |Θ|k/P′(Ω), making it very ef-
ficient for problems where the evidences are not very conflicting [Wilson 91].
The reason for this efficiency is that the number of (completed) trials needed to
achieve a given accuracy is not dependent on the size of the problem (e.g., |Θ|
and k).

If the belief functions are highly conflicting, so that P′(Ω) is extremely small,
then it will tend to take a very long time to find an ω in Ω, as illustrated by the
following example.

Example Let Θ = {x1, x2, . . . , xk}, for each i = 1, . . . , k, let Ωi = {1, 2}, let
Pi(1) = Pi(2) = 1

2 , let Γi(1) = {xi} and let Γi(2) = Θ. The triple (Ωi,Pi,Γi)
corresponds to a simple support function with mi({xi}) = 1

2 and mi(Θ) = 1
2 .

The conflict between the evidences is very high for large k since we have P′(Ω) =
(k + 1)/2k so the simple Monte-Carlo algorithm is not practical.

7.2 A Markov Chain Algorithm

We will consider Monte-Carlo algorithms where the trials are not independent,
but instead form a Markov Chain, so that the result of each trial is (proba-
bilistically) dependent only on the result of the previous trial. Section 7.2 is an
edited version of [Moral and Wilson, 94].

Both this and the random algorithm using commonality (section 7.3) are
based on Markov Chains that simulate PDS, that is, a sequence ω0, ω1, . . . , ωL

of elements in Ω, (in these two algorithms, starting element ω0 can be chosen
arbitrarily), where ωl depends randomly on ωl−1, but not on any previous mem-
ber of the sequence, and that for sufficiently large L, ωL will have distribution
very close to PDS(·). As for the simple algorithm we can then test if Γ(ωL) ⊆ A;
this procedure is repeated sufficiently many times to get a good estimate of
Bel(A).

7.2.1 The Connected Components of Ω

The Markov Chain algorithms of section 7.2 require a particular condition on
Ω to work, which we will call connectedness. This corresponds to the Markov

12Naturally, the constant of proportionality is bigger if greater accuracy is required.

34

Chain being irreducible [Feller, 50].
For i ∈ {1, . . . , k} and ω, ω′ ∈ Ω write ω ≡i ω′ if ω and ω′ differ at most on

their ith co-ordinate, i.e., if for all j ∈ {1, . . . , k} − {i}, ω(j) = ω′(j). Let U
be the union of the relations ≡i for i ∈ {1, . . . , k}, so that ω U ω′ if and only
if ω and ω′ differ at most on one co-ordinate; let equivalence relation ≡ be the
transitive closure of U . The equivalence classes of ≡ will be called connected
components of Ω, and Ω will be said to be connected if it has just one connected
component, i.e, if ≡ is the relation Ω× Ω.

A method for testing connectedness is sketched in section 5.1 of [Moral
and Wilson, 94]; the number of operations needed is at worst proportional to
|Θ|2

∑k
i=1 |Ωi|.

7.2.2 The Basic Markov Chain Monte-Carlo Algorithm

Probabilistic function PDSL(ω0) takes as input initial state ω0 ∈ Ω and number
of trials L and returns a state ω. The intention is that when L is large, for
any initial state ω0, Pr(PDSL(ω0) = ω) is very close to PDS(ω) for all ω ∈
Ω. The algorithm starts in state ω0 and randomly moves between elements of
Ω. The initial state ω0 can be picked arbitrarily; one way of doing this is to
pick arbitrarily an element θ in the combined core, and then choose, for each
i = 1, . . . , k, some ωi ∈ Ωi such that Γi(ωi) 3 θ; we can then let ω0 equal
(ω1, . . . , ωk), which is in Ω because Γ(ω) 3 θ.

In the algorithms the current state is labelled ωc.

FUNCTION PDSL(ω0)
ωc := ω0

for l = 1 to L
for i = 1 to k
ωc := operationi(ωc)

next i
next l
return ωc.

Probabilistic function operationi changes at most the ith co-ordinate of its
input ωc—it changes it to y with chance proportional to Pi(y). We therefore
have, for ω, ω′ ∈ Ω,

Pr(operationi(ω
′) = ω) =

{
αω′Pi(ω(i)) if ω ≡i ω′;
0 otherwise.

The normalisation constant αω′ is given by α−1
ω′ =

∑
ω ≡i ω′

Pi(ω(i)).

The reason that we require that Ω be connected is that that, in the algo-
rithms, the only values that ωc can take are the members of the ≡-equivalence
class of the starting position ω0.

35

7.2.3 The Calculation of Belief

If Ω is connected, then for sufficiently large L (and any choice of ω0), PDSL(ω0)
will have distribution very close to PDS. We can use this in a natural way to
produce algorithms for calculating Bel(A). Function BLJ (ω0) has inputs ω0, L
and J , where ω0 ∈ Ω is a starting value, L is the number of trials, and J is the
number of trials used by the function PDSJ(·) used in the algorithm. The value
BLJ (ω0) can be seen to be the proportion of the L trials in which Γ(ωc) ⊆ A.

In the BLJ (ω0) algorithm, for each call of PDSJ(·), Jk values of ω are gener-
ated, but only one, the last, is used to test if Γ(ω) ⊆ A. Alternatively, all of the
values could be used, which is what BELL(ω0) does. The implementation is very
similar to that for PDSL(ω0), the main difference being the extra if-statement
in the inside for loop. The value returned by BELL(ω0) is the proportion of
the time that Γ(ωc) ⊆ A.

FUNCTION BL
J (ω0) FUNCTION BELL(ω0)

ωc := ω0 ωc := ω0

S := 0 S := 0
for l = 1 to L for l = 1 to L

ωc := PDSJ(ωc) for i = 1 to k
if Γ(ωc) ⊆ A ωc := operationi(ωc)

then S := S + 1 if Γ(ωc) ⊆ A
next l then S := S + 1
return S

L next i
next l
return S

Lk

Although the algorithms are guaranteed to converge to the correct value
(for connected Ω) it is not clear how quickly this will happen. The following
example illustrates that the convergence rate will tend to be very slow if Ω is
only barely connected, i.e., if it is very hard for the algorithm to move between
some elements of Ω. For θ ∈ Θ, define θ∗ ⊆ Ω to be the set {ω ∈ Ω : Γ(ω) 3 θ}.

Example

Let k = 2q− 1, for some q ∈ IN , and let Θ = {x1, x2}. For each i = 1, . . . , k, let
Ωi = {1, 2}, let Pi(1) = Pi(2) = 1

2 , let Γi(2) = Θ and, for i ≤ q, let Γi(1) = {x1},
and, for i > q, let Γi(1) = {x2}. Each triple (Ωi,Pi,Γi) corresponds to a simple
support function. Ω is very nearly not connected since it is the union of two
sets {x1}∗ (which has 2q elements) and {x2}∗ (which has 2q−1 elements) which
have just a singleton intersection {(2, . . . , 2)}.

Suppose we want to use function BLJ (ω0) or function BELL(ω0) to estimate
Bel({x1}) (which is just under 2

3). If we start with ω0 such that Γ(ω0) = {x1}

36

then it will probably take of the order of 2q values of ω to reach a member of
{x2}∗. Therefore if q is large, e.g. q = 30, and we do a million trials then our
estimate of Bel({x1}) will almost certainly be 1. Other starting positions ω0

have similar problems.
Since P′(Ω) ≈ 3/2q the simple Monte-Carlo algorithm does not perform

satisfactorily here either. (If Ω is barely connected, then it will usually be small
in comparison to Ω×, so the contradiction will tend to be high, and the simple
Monte-Carlo algorithm will not work well either.)

Some possible ways of trying to solve this problem are suggested in section
8 of [Moral and Wilson, 94].

It may not be immediately obvious if the estimate of belief is close to con-
vergence or not; in the above example it would appear that the estimate of
Bel({x1}) has converged to 1, when in fact it’s far from convergence. There
is a way of seeing if the algorithm isn’t close to convergence: compute exactly
the relative commonalities of singletons, more precisely, Q({θj})/Q({θh}) for
all θj ∈ Θ, where Q({θh}) is the largest of these values—this can be done using
the simple form of Dempster’s rule for commonalities; also use the generated
values of ωc to estimate these ratios. If there is any substantial difference, then
the algorithm isn’t close to convergence.

7.3 A Random Algorithm Using Commonality

Let Θ be the core of the combined mass function, i.e., the union of its focal sets,
which can be calculated as the intersection of the cores of the constituent mass
functions (see section 3.3) Cm1 ∩· · ·∩Cmk

where Cmi
=

⋃
ωi∈Ωi

Γi(ωi). Of course
if, before applying the algorithms, we have conditioned all the source triples by
the combined core, and redefined Θ to be this, then we will have Θ = Θ.

As in section 7.2, we want to generate a Markov chain that converges rapidly
to PDS; this can then be used to pick an element ω in Ω with chance approx-
imately PDS(ω); we can then test if Γ(ω) ⊆ A, and we can repeat the process
until we have a high probability of being within a small range of the correct
value of Bel(A).

Recall that for θ ∈ Θ, the set θ∗ = {ω ∈ Ω : Γ(ω) 3 θ}. Although we can’t
always sample efficiently with PDS over the whole of Ω, we can sample easily
within each θ∗, because it’s a product subset of Ω: θ∗ =

∏k
i=1 θ

∗
i , where θ∗i is

defined to be {ωi ∈ Ωi : Γi(ωi) 3 θ}; PDS(ω|θ∗) = P′(ω|θ∗) =
∏k
i=1 Pi(ω(i)|θ∗i),

so we can pick a random element ω of θ∗ by picking random element ωi of θ∗i ,
for each i = 1, . . . , k, and letting ω = (ω1, . . . , ωk).

Furthermore, Ω is equal to the union of regions θ∗ for θ ∈ Θ, and we can
easily pick region θ∗ with chance proportional to PDS(θ∗): define the unnor-
malised commonality function Q′ by, for A ⊆ Θ, Q′(A) =

∏k
i=1Qi(A) where

Qi(A) = Pi(Γi(ωi) ⊇ A) (Qi is the commonality function associated with the

37

ith input source triple.) Define probability distribution Q′′ : Θ → [0, 1] by set-
ting, for θ ∈ Θ, Q′′(θ) = Q′({θ})/

∑
ψ∈ΘQ

′({ψ}). It can be shown that Q′′(θ)
is proportional to PDS(θ∗).

Hence the idea is to randomly pick a θ ∈ Θ and then randomly pick an
element ω ∈ θ∗. Element θ is picked with chance proportional to PDS(θ∗), i.e.,
with chance Q′′, and ω is then picked with chance P′(ω|θ∗).

However this scheme is biased towards ω with large Γ(ω), since there are
|Γ(ω)| = |{θ : θ∗ 3 ω}| ways of reaching ω (each of them equally likely). To
correct this bias we arrange that, if ωl−1 is the state after l − 1 trials, there is
only a chance proportional to |Γ(ωl−1)| that a new value is picked; otherwise
nothing happens (i.e., ωl is set to ωl−1).

Bringing these parts together (for other technical points, see [Wilson and
Moral, 96]) gives the following algorithm:

for l = 1 to L
if RND() ≥ 0.9

|Θ| |Γ(ωl−1)|
then ωl := ωl−1

else
Pick θ ∈ Θ with distribution Q′′

Pick ωl ∈ θ∗ with distribution P′(·|θ∗)
end if

next l

where RND() is a random number generator, taking a random value in [0, 1]
with uniform distribution each time it is called.

This Markov chain converges in a fairly predicable way, and can be used
to calculate Bel(A) in a similar way to that described in the previous section
(7.2). The overall computation is approximately proportional to |Θ| and k2 (or
possibly k); see [Wilson and Moral, 96] for details.

7.4 Importance Sampling Algorithms

The idea behind these importance (or weighted) sampling algorithms of Seraf́ın
Moral [Moral and Wilson, 96] is instead of sampling with the distribution of
interest PDS, we sample with a different distribution P∗ which is easier to sample
with, and then assign a weight proportional to PDS(ω)/P∗(ω) to each trial. We
can then estimate Bel(A), for A ⊆ Θ, by calculating the sum of weights for all
trials such that Γ(ω) ⊆ A, and dividing this by the sum of weights for all trials.

38

7.4.1 Commonality-based importance sampling

The algorithm described in 7.3 can spend a lot of time hanging around doing
nothing (i.e., we very often have ωl set to ωl−1). It will sometimes be much
more efficient to weight the trials instead, which is what the following algorithm
does.

S := 0
S′ := 0
for l = 1 to L

Pick θ ∈ Θ with distribution Q′′

Pick ω ∈ θ∗ with distribution P′(·|θ∗)
W := 1/|Γ(ω)|
if Γ(ω) ⊆ A then
S := S +W
else S′ := S′ +W

next l
return S

S+S′

The probability that particular value ω is picked in a given trial of the above
algorithm is

∑
θ∈ΘQ

′′(θ)P′(ω|θ∗) which is equal to PDS(ω)|Γ(ω)|/e where e =∑
θ∈Θ Q({θ}) =

∑
A⊆Θ m(A)|A|, where Q and m are the combined (normalised)

commonality and mass functions respectively. e can also seen to be the expected
value of |Γ(ω)| with respect to PDS.

Let T = S + S′. The expected value of eS/L is equal to Bel(A) and the
expected value of eT/L equals 1. The variance of eS/L is less than Bel(A)e/L
and that of eT/L is less than e/L. Therefore the expected value of random
variable S/T (the ratio of eS/L and eT/L) tends to Bel(A) as the number of
trials L tends to ∞. The number of trials needed for the algorithm to achieve
a given accuracy in its estimate of Bel(A) (with a given confidence level) is at
worst linear in e and hence at worst linear in |Θ| (but typically substantially
sublinear). The preprocessing and time required for each trial is similar to
the algorithm in 7.3 (see [Wilson and Moral, 96]). Overall the algorithm is
approximately linear in k|Θ|.

7.4.2 Importance sampling based on consistency

For the following algorithm to work we need that each ωi ∈ Ωi is consistent
with Ω (i.e., for each ωi ∈ Ωi there exists some ω ∈ Ω with ω(i) = ωi), or
equivalently, that each focal set of any of the input mass functions is consistent
with the combined core. One way of ensuring this is to compute the combined
core and condition each input source triple by this, before proceeding further.

39

The simple Monte-Carlo algorithm (see 7.1) was based on picking ω with
chance P′(ω) and afterwards, checking whether ω is in Ω, that is, if

⋂k
i=1 Γi(ωi) 6=

∅; if not, then ω is repicked. The selection of ω was carried out in the follow-
ing way: for each i = 1, . . . , k, we picked ωi ∈ Ωi with chance Pi(ωi) and let
ω = (ω1, . . . , ωk). We can avoid this continual repicking of ω if we ensure that
when co-ordinate ωi is picked, the choice is consistent with previous choices,
i.e., that

⋂i
j=1 Γj(ωj) 6= ∅. Let ∆ω

i be the set of consistent choices for the ith
co-ordinate, i.e., {ωi ∈ Ωi :

⋂i
j=1 Γj(ωj) 6= ∅}, and let Cωi = Pi(∆ω

i). As before,
we pick ωi in ∆ω

i , with chance proportional to Pi(ωi); hence ωi is picked with
chance Pi(ωi)/Cωi .

This biases the probability distribution away from PDS so we need to assign
a weight

∏k
i=1 C

ω
i to each trial to compensate (where ω is the random element

of Ω which gets picked).
Hence we have the following algorithm to estimate Bel(A).

S := 0
S′ := 0
for l = 1 to L
W := 1
for i = 1 to k
W := W ∗ Cωi
pick ωi ∈ ∆ω

i with chance Pi(ωi)/Cωi
next i
ω := (ω1, . . . , ωk)
if Γ(ω) ⊆ A then
S := S +W
else S′ := S′ +W

next l
return S

S+S′

As L tends to infinity, the expected value of S
S+S′ tends to Bel(A); however

the variance and the rate of convergence don’t seem to be easy to generally
determine.

A development of consistency-based importance sampling

A development of this algorithm has recently been proposed in [Moral and
Salmerón, 99]. As above, elements ω1, ω2, . . . , are picked in turn subject to
the constraint that ωi ∈ ∆ω

i , but with different chances. Suppose we have
picked ω1, ω2, . . . , ωi−1. Let Ω′ωi

be the set of possible ω which the algorithm
can end up picking (from this point), given that we pick ωi next, i.e., Ω′ωi

=
{ω ∈ Ω : for all j = 1, . . . , i, ω(j) = ωj}. Since the aim is to simulate PDS, to

40

reduce the variance, ideally we would like to choose ωi ∈ ∆ω
i with chance pro-

portional to PDS(Ω′ωi
), i.e., proportional to P′(Ω′ωi

). Now, Ω′ωi
is the set of all

ω ∈ Ω× such that (i) for j = 1, . . . , i, ω(j) = ωj and (ii)
⋂
j>i Γj(ωj) ∩ (X ∩

Γi(ωi)) 6= ∅, whereX =
⋂
j<i Γj(ωj) is the intersection of the focal sets picked so

far. Therefore P′(Ω′ωi
) is proportional to

(∏
j<i Pj(ωj)

)
Pi(ωi)Pl>i(X∩Γi(ωi)),

where Pl>i is the plausibility function corresponding to the combination of
source triples i+ 1, . . . , k. Since the first term does not depend on the choice of
ωi, PDS(Ω′ωi

) is proportional to Pi(ωi)Pl>i(X ∩ Γi(ωi)).
Unfortunately Pl>i cannot be easily computed. If however, we can approx-

imate it by a function Pl∗i that we can efficiently compute, then we can pick
ωi with chance (ki)−1Pi(ωi)Pl∗i (X ∩ Γi(ωi)), and multiply the weight at that
stage of the algorithm by ki/(Pl∗i (X ∩ Γi(ωi))), where ki is the appropriate
normalisation constant.

[Moral and Salmerón, 99] suggests approximating this combined plausibility
function by storing only a limited number of focal sets, using a method similar
to that described above in 6.2. Although their experimental results suggest
that this can perform well, their approximation of combined plausibility seems
likely to become a poor one for larger problems (see the discussion above in
6.2), perhaps limiting the benefits of this new algorithm. However, there may
be other approximations of plausibility that scale up better.

8 Computations for Decision-Making

Here we describe some functions which can be used in decision-making with
Dempster-Shafer theory. First we describe lower and upper expected utility with
respect to a mass/belief function, then Philippe Smets’ pignistic probability is
introduced. Finally we discuss the computation of these functions.

8.1 Lower and Upper Expected Utility

Let m be a mass function over Θ with associated belief function Bel; the associ-
ated set of compatible measures P is defined to be the set of probability measures
π over Θ such that π dominates Bel, i.e., for all A ⊆ Θ, π(A) ≥ Bel(A) [Demp-
ster, 67]. If π dominates Bel then Pl dominates π, where Pl is the plausibility
function associated with m. Belief function Bel is the lower envelope of P and
Pl is the upper envelope, i.e., for A ⊆ Θ, Bel(A) = inf {π(A) : π ∈ P}, and
Pl(A) = sup {π(A) : π ∈ P}.

Belief functions have been suggested as a representation of certain convex
sets of probability functions, so that e.g., Bel is a representation of P, see,
for example, [Fagin and Halpern, 89; Wasserman, 90; Jaffray, 92]. Obviously,
then P has a clear interpretation. In Dempster-Shafer theory, the connection
between belief functions and sets of Bayesian probability functions is slightly
more controversial (see e.g., [Shafer, 90]). However, Dempster intended that

41

the set of compatible probability functions be used in decision-making (see also
[Dempster and Kong, 87]). Shafer, at least to some extent, goes along with this,
in that he suggests in [Shafer, 81, page 22] that belief functions may be used
for betting (and hence decision-making), by using lower expectation. (Although
his approach does not explicitly deal with P, it leads, as he points out, to the
same values of upper and lower expected utility.) We briefly describe how this
is done.

Suppose U is a function from Θ to IR, which for example could be a utility
function. If our beliefs about Θ could be described by a Bayesian probability
distribution π : Θ → [0, 1] then we could calculate the value of expected utility
Eπ[U] = π ·U =

∑
θ∈Θ π(θ)U(θ). If instead Bel summarises our beliefs about Θ,

then it is natural to consider the lower expectation E∗[U] and upper expectation
E∗[U] defined by E∗[U] = infπ∈P π · U and E∗[U] = supπ∈P π · U . These
can be expressed (see [Shafer, 81; Wilson, 93b]) in a computationally more
convenient form: E∗[U] =

∑
A⊆Θ m(A)U∗(A) and E∗[U] =

∑
A⊆Θ m(A)U∗(A),

where U∗(A) = minθ∈A U(θ) and U∗(A) = maxθ∈A U(θ).

8.2 Pignistic Probability

An alternative approach to decision-making with belief functions is given by
Philippe Smets in his variant of Dempster-Shafer theory, the Transferable Belief
Model, see e.g., [Smets, 89; Smets and Kennes, 94]. This involves picking a
particular element of the set of compatible measures P, known as the pignistic
probability , and calculating expected utility with respect to this.

The pignistic probability measure ρ associated with mass function m is de-
fined by

for A ⊆ Θ, ρ(A) =
∑
B⊆Θ

m(B)
|B ∩A|
|B|

.

ρ is thus the result of distributing each mass m(B) equally over the elements of
B.

There are certainly advantages of generating a single probability measure to
use for decision-making, as we’re much more likely to get a uniquely preferred
option; however it might be argued that picking any element of P over and
above the others is unjustified. In particular, the choice of ρ has the problem
that it is very much dependent on the choice of frame used to represent the
problem (so if we refine Θ before generating the pignistic probabilities we get
an essentially different result). An extreme example is when m(Θ) = 1 (the
vacuous mass function [Shafer, 76]), when the pignistic probability distribution
is the uniform distribution; the usual criticisms (see e.g., [Wilson, 92a]) of the
notorious Principle of Indifference can then be used to argue against this. For
more discussion of these issues see [Wilson, 93b].

42

8.3 Computation of the Functions

Lower and upper expected utility, pignistic probability, as well as belief, plau-
sibility and commonality can all be expressed in the form

∑
m(B)F (B) for

different choices of the function F : 2Θ → IR. For lower expected utility we set
F = U∗, for upper expected utility we set F = U∗. For the pignistic probability
of A ⊆ Θ we set F (B) = |B∩A|

|B| ; for Bel(A) we define F (B) to be 1 iff B ⊆ A,
and define it to be 0 otherwise; Pl(A) and Q(A) can be defined in a similar
fashion.

This means that, if we have m represented in an ordered list or binary tree, we
can compute these functions easily, since the expression equals

∑
B∈Fm

m(B)F (B).

A more challenging situation is where m is the combination of a number of
mass functions, and we’re interested in e.g., lower expected utility. The com-
bined mass function may have a very large number of focal sets so the exact
methods of section 5 will often not be feasible. Using the source triples model
(see sections 2.2 and 2.4.2) we can write

∑
B⊆Θ m(B)F (B) as

∑
ω∈Ω PDS(ω)F (Γ(ω)),

which is the expected value of the function Γ ◦ F with respect to PDS. The
Monte-Carlo algorithms of 7.1, 7.2 and 7.3 all involve finding a way of pick-
ing an element of Ω with distribution PDS; we can use these methods to pick
ω ∈ Ω, and then record the value F (Γ(ω)); we repeat this many times and
compute the average of the values of F (Γ(ω)); this will then be our estimate of∑
B⊆Θ m(B)F (B). Adapting the Importance Sampling algorithms (7.4.1 and

7.4.2) is also straight-forward.

9 Exact Algorithms for Calculating Combined
Belief over Product Sets

All the methods described above for calculating combined belief require the
elements of Θ to be listed; if Θ is a product set formed from a sizeable number
of frames then this will not be feasible, and so other methods must be used. In
this section we describe and discuss the use of the local computation methods
of Glenn Shafer and Prakash Shenoy (see e.g., [Shenoy and Shafer, 90]) for
calculating combined belief in product spaces; a more general framework is
described in [Shafer, Shenoy and Mellouli, 87] (see also [Kohlas and Monney,
95, chapter 8]).

For a fuller treatment of the subject of local computation and the literature,
the reader should refer to the chapter by Jürg Kohlas and Prakash Shenoy in
this volume. Papers which specifically deal with the computations in Dempster-
Shafer theory on product sets include [Kong, 86; Shenoy and Shafer, 86; Shafer,
Shenoy, and Mellouli, 87; Dempster, and Kong, 88; Xu, 91, 92; Xu and Kennes,
94; Bissig, Kohlas, and Lehmann, 97; Lehmann, and Haenni, 99].

43

9.1 Subsets of Product Sets

Let Ψ be finite non-empty set of variables. Associated with each variable Y ∈ Ψ
is its set of possible values (or frame of discernment) ΘY . For s ⊆ Ψ define Θs to
be the product set

∏
Y ∈s ΘY . Elements of Θs are called configurations of s, or

s-configurations. Hence a configuration x of s may be considered as a function
on s such that for Y ∈ s, x(Y) ∈ ΘY . For r ⊆ s ⊆ Ψ, let πsr : Θs → Θr be
the natural projection function, defined as follows: for x ∈ Θs, πsr(x) is just x
restricted to r, i.e., for Y ∈ r, πsr(x)(Y) = x(Y). We will usually use a briefer
notation: x↓r instead of πsr(x). Function πsr is extended to subsets of Θs: for
A ⊆ Θs, πsr(A) and A↓r are both defined to be {x↓r : x ∈ A}. This operation
is known as ‘marginalising A to r’.

We will also be concerned, for r ⊆ s ⊆ Ψ, with ρsr = (πsr)
−1, the set inverse

of πsr , given by ρsr(y) = {x ∈ Θs : x↓r = y}, which will usually written as y↑s.
Again we extend to subsets: for B ⊆ Θr, let ρsr(B), normally written as B↑s,
=

⋃
y∈B y↑s. We will refer to this operation as vacuously extending B to s.

The pair (Θr, π
s
r) is a coarsening of Θs and vacuous extension ρsr is the

associated refining (see section 3.4).

For example, let ΘY = {a, b, c} and ΘZ = {d, e}. Then Θ{Y,Z} = ΘY ×
ΘZ = {(a, d), (a, e), (b, d), (b, e), (c, d), (c, e)}. If x = (a, e) then x↓{Y } = a. If
A = {(a, e), (c, d), (c, e)} then A↓{Y } = {a, c}. If B = {a, c} then B↑{Y,Z} =
{(a, d), (a, e), (c, d), (c, e)}.

For each variable Y it is assumed that there is precisely one correct (but
usually unknown) value in ΘY . A configuration x of variables s is considered
as a representation of the proposition that for each variable Y in s, the correct
value of Y is x(Y). Hence there is precisely one true configuration of s, that
consisting of all the correct values for all the variables in s. For A ⊆ Θs, the
set A of configurations of s is understood to represent the proposition that one
of the configurations in A is the true one. With this interpretation one can see
that, in the above example, the set B = {a, c} represents the same proposition as
B↑{Y,Z} = {(a, d), (a, e), (c, d), (c, e)}, since both tell us that the correct value
variable Y is either a or c, but do not give us any (non-trivial) information
about the correct value of variable Z. In general one can see that if r ⊆ s ⊆ Ψ,
and B ⊆ Θr, then B represents the same proposition (and so means the same
thing) as B↑s; if we vacuously extend a set of configurations B we involve more
variables but we do not assume anything about the values of those variables.

For r ⊆ s ⊆ Ψ and A ⊆ Θs, the set of r-configurations A↓r gives us the same
information as A gives about the correct values of variables in r (but of course
tells us nothing about the variables in s− r).

Combination of sets of configurations: Suppose s, t ⊆ Ψ, A ⊆ Θs and
B ⊆ Θt. Define A⊗B, the combination of A and B, to be A↑s∪t∩B↑s∪t, which
is a subset of Θs∪t.

44

With the interpretation given above, it can be seen that A⊗B means that
the propositions represented by A and B are both true.

9.2 Mass Potentials on Product Sets

For set of variables r ⊆ Ψ, an r-mass potential is defined to be a mass potential
over Θr. We can define r-mass functions, r-belief functions etc. analogously.

For r ⊆ s ⊆ Ψ, and r-mass potential m define s-mass potential m↑s, called
the vacuous extension of m to s, as follows: for A ⊆ Θs, if there exists B ⊆ Θr

with B↑s = A then m↑s(A) = m(B), otherwise m↑s(A) = 0. Mass potential m
is a mass function (i.e. m(∅) = 0) if and only if m↑s is a mass function. The
set of focal sets of m↑s is just {B↑s : B ∈ Fm}, where Fm is the set of focal
sets of m. Since B and B↑s represent the same proposition, m and m↑s can be
considered as equivalent semantically.

Abbreviate the associated unnormalised commonality function Qm↑s to Q↑s.
For A ⊆ Θs, we have Q↑s(A) = Q(A↓r) where Q is the unnormalised common-
ality function associated with m.

For r ⊆ s ⊆ Ψ and s-mass potential m define m↓r, known as the r-marginal
of m, as follows: for B ⊆ Θr let m↓r(B) =

∑
{m(A) : A ⊆ Θs, A

↓r = B}. m↓r

is a mass function if and only if m is.
Define Bel↓r to be Belm↓r , i.e., the unnormalised belief function associated

with m↓r. The values of Bel↓r are determined by the equation: for B ⊆ Θr,
Bel↓r(B) = Bel(B↑s), where Bel is the unnormalised belief function associated
with m.

Suppose s, t ⊆ Ψ, m is an s-mass potential, and n is a t-mass potential. If
s 6= t then m⊕n has not been defined since the mass potentials are over different
frames. However m is semantically equivalent to m↑s∪t and n is semantically
equivalent to n↑s∪t, and these two are over the same frame. The combination of
m and n, m⊕ n, is thus defined to be m↑s∪t⊕ n↑s∪t, where ⊕ on the right-hand
side is the usual combination using Dempster’s rule. Similarly we define the
unnormalised combination m⊗ n to be m↑s∪t ⊗ n↑s∪t.

9.3 Product Set Propagation Algorithms

Suppose we are given, for i = 1, . . . , k, si-mass function mi, where si ⊆ Ψ; (the
subsets si should be thought of as being fairly small—the methods described
are not efficient otherwise). We are interested in the combined effect of this
information, i.e.,

⊕k
i=1 mi. We can leave the normalisation stage until the end,

so let m be the mass potential m =
⊗k

i=1 mi. This is a mass potential on the
frame generated by variables s1∪· · ·∪sk, which will typically be a huge product
set, so we are certainly not usually going to be able to efficiently compute all
focal sets of m explicitly. However, we may be particularly interested in the

45

impact on a set of variables,13 say, s1, so we will want to calculate m↓s1 , and
associated (normalised) belief values. Direct computation of this (by computing
the combination m and then marginalising) will usually be infeasible. Prakash
Shenoy and Glenn Shafer have shown how this can, in certain cases, be computed
using combinations on much smaller frames, see e.g., [Shenoy and Shafer, 90].

There are two stages with their approach. The first stage takes as input
the set of subsets s1, . . . , sk and returns another set of subsets R which is a
hypertree (see below) and covers s1, . . . , sk (i.e., for each si there exists r ∈ R
with r ⊇ si). The second stage uses the constructed hypertree cover to compute
m↓s1 using a sequence of steps, each of which consists of a combination followed
by a marginalisation, where the combination is on a frame Θu where u ⊆ r for
some r ∈ R. This means that, if it is possible to find R such that each r ∈ R is
small, then the combinations are all performed on frames of manageable size.

Kohlas and Shenoy (this volume) present the algorithm in a simpler way by
considering deletion sequences, which avoids the need to talk about hypertrees.
However, since we want to consider computational efficiency, which is closely
linked to the hypertree cover, it makes sense to consider the latter explicitly.

9.3.1 Stage One: finding a hypertree cover

A set R of subsets of Ψ is said to be a hypertree [Shenoy and Shafer, 90] if it can
be ordered as r1, . . . , rl where for each 2 ≤ j ≤ l there exists j′ ∈ {1, . . . , j − 1}
such that ∅ 6= rj ∩

⋃j−1
i=1 ri ⊆ rj′ . The elements of a hypertree are called

hyperedges. Such a sequence r1, . . . , rl of the hyperedges of R is said to be a
hypertree construction sequence for R.

Stage One involves finding a hypertree cover of s1, . . . , sk, i.e., a hypertree
R such that for each si there exists r ∈ R with r ⊇ si. We choose a hypertree
construction sequence r1, . . . , rl of R such that r1 ⊇ s1.

It’s worth spending some time trying to get a good hypertree cover as it can
hugely affect the complexity of the computation. One measure14 of ‘badness’ of a
hypertree cover is the size of the largest product set associated with a hyperedge
in R, i.e., the maximum value of

∏
Y ∈rj

|ΘY | as rj ranges over the hyperedges in
R; the complexity of exact methods of computation can be exponentially related
to this value. See Kohlas and Shenoy (this volume) section 3, for references for
finding hypertree covers (since finding a good deletion sequence is essentially
the same problem).

13We only consider here computation of one such marginal; however, there are efficient
algorithms for computing all such marginal mass potentials, e.g., [Shenoy and Shafer, 90,
section 3.4; Xu, 95; Bissig, Kohlas and Lehmann, 97; Kohlas and Shenoy, this volume, section
4.2].

14This measure is not always appropriate; for example, for some algorithms, more important
is the sizes of product sets associated with intersections of hyperedges.

46

9.3.2 Stage Two: perform the sequence of combination-marginalisations

Recall m =
⊗k

i=1 mi. We compute m↓s1 by computing m↓r1 and then marginal-
ising to s1. To calculate m↓s1 we first associate each mi with a hyperedge rmi

of our chosen hypertree cover R such that rmi ⊇ si.
For j = 1, . . . , l, let Ψj =

⋃
i≤j ri. Let n be the unnormalised combination

of all the mass potentials associated with rl, i.e.,
⊗
{mi : rmi = rl}, and let

u ⊆ rl be its associated set of variables15. We compute n′ = n↓(u∩Ψl−1). We
also associate n′ with a hyperedge r such that r ⊇ u ∩Ψl−1 (the definition of a
hypertree makes this possible).

Using properties of mass potentials (see [Shenoy and Shafer, 90]) it can be
shown that m↓r1 = (

⊗k
i=1 mi)↓r1 can be rewritten as (n′⊗

⊗
i∈χ mi)↓r1 where χ

are the indices of the mass potentials not yet combined, i.e., χ = {i : rmi 6= rl}.
We can then repeat the process, considering the combination of all mass

potentials associated with rl−1, letting u′ be the set of variables associated with
this combination, computing the marginalisation of the combination to u′∩Ψl−2,
and so on, until we have calculated m↓r1 . Finally we can marginalise this to get
m↓s1 , normalise this, and we can then calculate the values of belief of subsets
of Θs1 of interest.

Before giving two methods for performing the combination-marginalisations
step needed in Stage 2 (9.3.4 and 9.3.5), we discuss a special case.

9.3.3 The special case of subsets

An important special case is when each of the input mass functions mi has
only a single focal set: i.e., for i = 1, . . . , k, there exists Ci with mi(Ci) = 1.
Combination and marginalisation both preserve this property, and m↓t

i = C↓ti
and mi ⊗ mj = Ci ⊗ Cj where the operations on subsets are those defined in
section 9.1.

As described above, the basic step in the method involves combination
of a number of mass potentials mi : i ∈ σ associated with a hyperedge r,
marginalised to a subset t of another hyperedge, which can be done by comput-
ing

(⋂
i∈σ C

↑r
i

)↓t. An obvious algorithm for doing this takes time proportional
to |Θr| × |σ|. Unless the number of mass potentials we’re combining is huge,
the term to be concerned about is |Θr| =

∏
Y ∈r |ΘY |.

The complexity of the computation for this case is hence linearly related to
the size of the largest product set associated with a hyperedge in the hypertree
cover used.

15Normally u will be equal to rl; this always happens, for example, if the hypertree is
generated by a deletion sequence.

47

9.3.4 Fast Möbius Transform method for Stage Two

The idea behind this method is to perform combinations with (unnormalised)
commonality functions, and marginalisations with (unnormalised) belief func-
tions, because of the simple forms of these operations for those functions. Hence
we convert to commonality functions before combination, use these to combine,
and convert the combination to the belief function representation; this is then
marginalised.

The basic step in the method involves combination of a number of mass
potentials mi : i ∈ σ associated with a hyperedge r, marginalised to a subset
t of another hyperedge, i.e., computing

(⊗
i∈σ m↑u

i

)↓t, where set of variables u
equals

⋃
i∈σ si (⊆ r).

Since we will be using associated unnormalised belief and commonality func-
tions to represent each mi and the resulting mass potential, we must (i) convert
our representation for each mi to the associated unnormalised commonality
function Qi. Then (ii) we can use the simple form of Dempster’s rule for com-
monality functions to compute the combined unnormalised commonality func-
tion. Finally (iii) we convert this to its associated unnormalised belief function,
from where the values of the marginalised belief function can be read off. In
more detail:

(i) There are two cases:

(a) if mi is one of the input mass functions, then we use the Fast Möbius
Transform (ii) (see section 4.2) to convert mi to the associated un-
normalised commonality function Qi.

(b) if mi is the result of a previous computation then our representation
for it is as its associated unnormalised belief function Beli. We then
use the appropriate Fast Möbius Transform (iii) (see section 4.2) to
convert to the associated unnormalised commonality function Qi.

(ii) Let Q be the combined unnormalised commonality function, i.e., that
associated with

⊗
i∈σ m↑u

i . For A ⊆ Θu, Q(A) =
∏
i∈σ Q↑u

i (A) which can
be computed as

∏
i∈σ Qi(A↓si).

(iii) Q can then be converted to the associated unnormalised belief function
Bel. The values of Bel↓t are then given by Bel↓t(B) = Bel(B↑u) for B ⊆
Θt.

One can get a good idea of the complexity by considering stage (iii). This
involves |Θu|2|Θu|−1 additions, where |Θu| =

∏
Y ∈u |ΘY |. Note that this is true

for all cases, not just the worst case. Even for a set u consisting of 5 boolean
variables, |Θu| = 32, so the number of additions is about 70 billion. Problems
in which there’s a hyperedge (i.e., a set u) consisting of 6 boolean variables, or

48

4 three-valued variables, or 3 four-valued variables are all well beyond the reach
of today’s computers.

This double exponentiality means that the approach is only feasible for a
very restricted class of problems, where all the product sets associated with
hyperedges are small.

A more direct approach to moving between m and Q is suggested in [Bissig,
Kohlas and Lehmann, 97]. If one has a list of the focal sets with corresponding
masses (e.g., as an ordered list, see 3.1.2), the equation Q(A) =

∑
B⊇A m(B),

can be used to compute the values of Q on F . Conversely, suppose that one has
a list of values of Q on some set G known to contain all the focal sets F . If one
orders G as A1, . . . , A|G| in any way such that Ai ⊇ Aj implies i ≤ j then m
can be recovered by applying the equation m(A) = Q(A)−

∑
B⊃A m(B) (where

B ⊃ A means ‘B is a proper superset of A’) sequentially to A1, A2, Very
similar methods can be used to move between m and Bel. These computations
are, at worst, quadratic in |F| (or |G|), so if the number of focal sets is very
much smaller than 2|Θ| this approach can be much faster than using the Fast
Möbius Transform. The computation of the combined commonality function
(see (ii) above) can be done iteratively (to allow more efficient computation
of the set of focal sets of the combination), similarly to the combination of
several mass potentials in 5.1.2 and 9.3.5. However the final conversion stage
(see (iii) above) to m and/or Bel may make this approach often worse than the
mass-based approach below.

9.3.5 Mass-based algorithm for Stage Two

An alternative method is where we only deal with mass potentials, using the
method of section 5.1 for the combination; the marginalisation step can then
be performed using the equation m↓t(B) =

∑
{m(A) : A ⊆ Θu, A

↓t = B}, for
B ⊆ Θt.

This approach will tend to suffer from the same double exponentiality prob-
lems as the Fast Möbius Transform method (9.3.4), and can be even worse than
that method for some problems. However, there are many situations where the
mass-based approach will be much faster.

For example, suppose we want to combine an {Y1, Y2, Y3}-mass potential
with an {Y1, Y4, Y5}-mass potential and then marginalise to {Y2, Y3, Y4}, where
all the variables are boolean. Each mass potential has at most 223

= 256 fo-
cal sets so an upper bound for the number of multiplications needed for the
combination is 2562 = 216, and none are needed for the marginalisation. The
number of additions needed for combination and marginalisation is less than
this. The combination also needs at most 216 intersections, each of which re-
quires at most 25 very fast operations (one-digit binary multiplications); the
dominant term will thus probably be the 216 multiplications. The Fast Möbius
Transform method, on the other hand, requires 232 multiplications, making it

49

much slower.
A more extreme example is if we suppose that, as well as the {Y1, Y2, Y3}-

mass potential and the {Y1, Y4, Y5}-mass potential, we have to combine a {Y1, Y2, Y3, Y4, Y5, Y6}-
mass potential, which is one of the inputs of the problem, and only had 4 focal
sets (the input mass functions will very often have small numbers of focal sets).
An upper bound for the number of multiplications needed by the direct mass-
based approach is 216 × 4 = 218. However the Fast Möbius Transform method
would need 265 multiplications which is completely unfeasible.

However, after a few stages of combination and marginalisation, the num-
ber of focal sets will tend to get very large, so all these methods have severe
computational problems.

9.3.6 Conditioning by marginalised combined core

Earlier, it was pointed out that initially conditioning the input mass functions by
their combined core could in some cases greatly improve the efficiency of frame-
based algorithms. A similar operation can be applied in the case of product set
frames of discernment.

Let Ci ⊆ Θsi
be the core of mass function mi. With product sets one cannot

generally efficiently calculate (explicitly) the combined core
⊗k

i=1 Ci as it’s a
subset of an often huge product set ΘΨ. However, one can efficiently compute
for each i, m′

i = mi ⊗ (
⊗k

i=1 Ci)↓si , since combination of subsets is fast (see
9.3.3). It can be shown that the combination

⊗
m′
i is the same as

⊗
mi, so

we can replace each mi by m′
i, without changing the combination. The main

reason for doing this is that it can happen that m′
i has many fewer focal sets

than mi.

10 Monte-Carlo Methods for Product Sets

In this section, various Monte-Carlo methods from section 7 are applied to the
case when the frame of discernment is a product set. All the algorithms can
benefit from first conditioning all the input mass functions by the marginalised
combined core (see section 9.3.6).

It is of course possible to apply the algorithms of section 7 directly, ignoring
the structure of ΘΨ and just treating it like any other frame. For example, with
the commonality-based importance sampling algorithm (section 7.4.1), the time
required will be roughly proportional to |ΘΨ|, which may be feasible for not too
large problems; it will, for example, be more efficient than the exact product set
propagation method using the Fast Möbius Transform (section 9.3.4) if |ΘΨ| is
very much smaller than 2N where N = max {|Θr| : hyperedges r}.

However, very often, the product set will be too large to take this approach,
so we consider methods that use the structure of the product set.

50

10.1 Source Triples for Product Sets

As before, it’s convenient to use the source triples representation for Monte-
Carlo algorithms; each mi is represented by an equivalent source triple (Ωi,Pi,Γi)
over Θsi

, so that for all B ⊆ Θsi
, mi(B) =

∑
{Pi(ωi) : ωi ∈ Ωi,Γi(ωi) = B}.

We have to slightly amend the definition (section 2.4.2) of the combined source
triple (Ω,PDS,Γ): define Γ′: Ω× → 2Θ by Γ′(ω) =

⊗k
i=1 Γi(ω(i)), and as before,

let Γ be Γ′ restricted to Ω; the other parts of the definition are unchanged.
To slightly simplify the presentation we’ll assume, without any real loss of

generality, that
⋃k
i=1 si = Ψ. As discussed above, A ⊆ Θsi

is semantically
equivalent to A↑Ψ ⊆ ΘΨ; each Γi(ω(i)) is semantically equivalent to Γi(ω(i))↑Ψ,
and so

⊗k
i=1 Γi(ω(i)) is semantically equivalent to

⋂k
i=1(Γi(ω(i))↑Ψ. Hence this

definition is consistent with the earlier definition of the combined source triple.

10.2 Simple Monte-Carlo Method

We’ll assume that any set A whose belief we want to find, is a subset of Θt for
some hyperedge t in the hypertree cover. If we want to find the belief of any
other set s0, then we choose a hypertree cover of s0, s1, . . . , sk including s0.

The simple Monte-Carlo algorithm (see section 7.1) can be applied easily to
the product set case:

For each trial:
for i = 1, . . . , k

pick ωi ∈ Ωi with chance Pi(ωi)
let ω = (ω1, . . . , ωk)
if (Γ(ω))↓t = ∅

then restart trial
else if (Γ(ω))↓t ⊆ A

then trial succeeds
else trial fails

Checking conditions (Γ(ω))↓t = ∅ and (Γ(ω))↓t ⊆ A, i.e.,
(⊗k

i=1 Γi(ω(i))
)↓t ⊆

A, can be done using the algorithm for propagating subsets (see 9.3.3).
Since A ⊆ Θt can be viewed as a representation of A↑Ψ, and the condition

(Γ(ω))↓t ⊆ A is equivalent to (Γ(ω)) ⊆ A↑Ψ, this can be seen to essentially just
be a rewriting for product sets of the frame-based algorithm.

Again there is the problem that if the conflict between the input mass func-
tions is very high (i.e., P′(Ω) is very small), then the algorithm will be slow.
One idea to improve this situation is suggested by the observation that the
conflict between a pair of mass functions mi and mj will tend to be less if the
intersection si∩sj of their associated sets of variables is small; (an extreme case
is when si ∩ sj = ∅: then there can be no conflict between mi and mj). There-
fore it may well be the case that most of the conflict between the input mass

51

functions/source triples arises from conflict between mass functions associated
with the same hyperedge. We can remove this source of conflict by amending
the algorithm, a single trial of which is described below:

For each hyperedge r in the hypertree cover R we consider the set Mr of
associated mass functions, i.e., those with rmi = r. We apply the random
algorithm using commonality (see section 7.3) to pick a random focal set Ar
of the combination

⊗
Mr. The time needed for this will be roughly linearly

related to |Θr| (ignoring the dependence on k, and with a fairly high constant
factor), and is not affected by a high degree of conflict.

We then test to see if
⊗

r∈RAr is empty. If it is, then we have to restart
the trial. If it is non-empty we, as usual, test to see if (

⊗
r∈RAr)

↓t ⊆ A.

Note that it may well be worth choosing the hypertree cover R so that the
intersections between hyperedges r are small, as this can reduce the conflict,
even if it means making some of the hyperedges larger.

10.3 Markov Chain Method

The adaption of the Markov Chain method of section 7.2 to the product set
case is also straight-forward. The implementation of operationi involves finding
which elements of Ωi are consistent with the other co-ordinates of the current
state ωc, i.e., for which elements ωi ∈ Ωi is Γi(ωi) ⊗

⊗
j 6=i Γj(ω

c
j) non-empty;

this can be efficiently determined using the propagation of subsets (section 9.3.3)
by checking the equivalent condition: Γi(ωi) ⊗ (

⊗
j 6=i Γj(ω

c
j))

↓rmi 6= ∅, where
rmi ∈ R is the hyperedge associated with mi.

This algorithm suffers from the same problem as the frame-based algorithm
(see section 7.2): it will not work (well) if Ω is unconnected (poorly connected).
Also, for the product set case there seems to be no easy way of testing connec-
tivity. However many connectivity problems will be internal to hyperedges, and
these can be solved using a form of blocking : we apply the Markov Chain Algo-
rithm of section 7.2 to the set of mass potentials {mr : r ∈ R}, where mr is the
combination

⊗
m∈Mr

m. We don’t need to explicitly calculate the combinations⊗
m∈Mr

m, but, for a given r, we can use the random algorithm using common-
ality (section 7.3) to pick a new random focal set of mr which is consistent with
the other co-ordinates of the current state.

10.4 Importance Sampling Based on Consistency

This algorithm can also be easily adapted to product sets, in a similar fashion to
the Markov Chain algorithm. As with the frame-based version of the algorithm
(section 7.4.2), it is essential that each focal set of each input mass function is
consistent with the combined core. This can be achieved by initially conditioning
each input mass function by the marginalised combined core (see section 9.3.6).

52

The algorithm involves determining the set ∆ω
i of consistent choices for the

ith co-ordinate, i.e., {ωi ∈ Ωi :
⊗i

j=1 Γj(ωj) 6= ∅}, i.e., ωi such that Γi(ωi)∩Bi

is non-empty, where Bi = (
⊗i−1

j=1 Γj(ωj))↓si , which can be calculated using the
method of propagating subsets in section 9.3.3.

This algorithm may work well, as there doesn’t seem to be an obvious con-
nection between the size of the frame of discernment and the variance of the
estimate of belief; however, further analysis and experimental testing is needed
to ascertain this.

11 Summary

The main problem to which this chapter is addressed is that of calculating, from
a number of mass functions, values of Dempster-Shafer belief corresponding
to their combination (using Dempster’s rule). The following are the general
conclusions of the chapter.

• For very small frames of discernment Θ, exact algorithms can be used
to compute combined Dempster-Shafer belief. Approximation algorithms
can probably also sometimes be useful when Θ is small.

• Monte-Carlo algorithms should be reasonably efficient for calculating com-
bined belief, if Θ is not huge, with the best of the algorithms being roughly
linear in |Θ|.

• Where Θ is a huge product set, the local computation approach of Shafer
and Shenoy can sometimes be applied, but exact algorithms appear to be
practical only for very sparse situations.

• Several of the Monte-Carlo algorithms can be applied to this case, and
seem to be much more promising; however it is still unclear which of these
algorithms (if any) will work well in practice. Further development of
Monte-Carlo algorithms for product sets seems to be the most important
area for future research.

Acknowledgements

I’m grateful to Llúıs Godo, Jürg Kohlas and Philippe Smets for their detailed
and helpful comments.

References

Barnett, J.A., 81, Computational methods for a mathematical theory of evi-
dence, in: Proceedings IJCAI-81, Vancouver, BC 868-875.

53

Bauer, M., 97, Approximation Algorithms and Decision-Making in the Dempster-
Shafer Theory of Evidence—An Empirical Study, International Journal of
Approximate Reasoning 17: 217–237.

Bissig, R., Kohlas, J., and Lehmann, N., 97, Fast-Division Architecture for
Dempster-Shafer Belief Functions, Proc. ECSQARU–FAPR’97, D. Gabbay,
R. Kruse, A. Nonnengart, and H. J. Ohlbach (eds.), Springer-Verlag, 198–
209.

Dempster, A. P., 67, Upper and Lower Probabilities Induced by a Multi-valued
Mapping. Annals of Mathematical Statistics 38: 325–39.

Dempster, A. P., 68, A Generalisation of Bayesian Inference (with discussion),
J. Royal Statistical Society ser. B 30: 205–247.

Dempster, A. P., and Kong, A., 87, in discussion of G. Shafer, Probability
Judgment in Artificial Intelligence and Expert Systems (with discussion)
Statistical Science, 2, No.1, 3-44.

Dempster, A. P., and Kong, A., 88, Uncertain Evidence and Artificial Anal-
ysis, Journal of Statistical Planning and Inference 20 (1988) 355–368; also
Readings in Uncertain Reasoning , G. Shafer and J. Pearl (eds.), Morgan
Kaufmann, San Mateo, California, 1990, 522–528.

Dubois, D. and Prade, H., 90, Consonant Approximations of Belief Functions,
International Journal of Approximate Reasoning 4: 419–449.

Fagin R., and Halpern, J. Y., 89, Uncertainty, Belief and Probability, Proc.,
International Joint Conference on AI (IJCAI-89), 1161-1167.

Feller, W., 50, An Introduction to Probability Theory and Its Applications,
second edition, John Wiley and Sons, New York, London.

Gordon, J. and Shortliffe, E.H., 85, A Method of Managing Evidential Reasoning
in a Hierarchical Hypothesis Space, Artificial Intelligence 26, 323-357.

Hájek, P., 92, Deriving Dempster’s Rule, Proc. IPMU’92, Univ. de Iles Baleares,
Mallorca, Spain, 73–75.

IJAR, 92, Special Issue of Int. J. Approximate Reasoning , 6:3, May 1992.
Jaffray, J-Y, 92, Bayesian Updating and Belief Functions, IEEE Trans. SMC ,

22: 1144–1152.
Joshi, A.V., Sahasrabudhe, S. C., and Shankar, K., 95, Bayesian Approximation

and Invariance of Bayesian Belief Functions, 251–258 of Froidevaux, C., and
Kohlas, J., (eds.), Proc. ECSQARU ’95, Springer Lecture Notes in Artificial
Intelligence 946.

Kämpke, T., 88, About Assessing and Evaluating Uncertain Inferences Within
the Theory of Evidence, Decision Support Systems 4, 433-439.

Kennes, R., and Smets, P., 90a, Computational Aspects of the Möbius trans-
form, Proc. 6th Conference on Uncertainty in Artificial Intelligence, P.
Bonissone, and M. Henrion, (eds.), MIT, Cambridge, Mass., USA, 344–351.

54

Kennes, R.,, and Smets, P., 90b, Proceedings of IPMU Conference, Paris,
France, 99–101. Full paper in: Bouchon-Meunier, B., Yager, R. R., Zadeh,
L. A., (eds.), Uncertainty in Knowledge Bases,, (1991), 14–23.

Kohlas, J., and Monney, P.-A., 95, A Mathematical Theory of Hints, Springer
Lecture Notes in Economics and Mathematical Systems 425.

Kong, A., 86, Multivariate belief functions and graphical models, PhD disser-
tation, Dept. Statistics, Harvard University, USA.

Kreinovich, V., Bernat, A., Borrett, W., Mariscal, Y., and Villa, E., 92, Monte-
Carlo Methods Make Dempster-Shafer Formalism Feasible, 175–191 of Yager,
R., Kacprzyk, J., and Fedrizzi, M., (eds.), Advances in the Dempster-Shafer
Theory of Evidence, John Wiley and Sons.

Laskey, K. B. and Lehner, P. E., 89, Assumptions, Beliefs and Probabilities,
Artificial Intelligence 41 (1989/90): 65–77.

Lehmann, N., and Haenni, R., 99, An Alternative to Outward Propagation for
Dempster-Shafer Belief Functions, Proc. ECSQARU’99, London, UK, July
99, Lecture Notes in Artificial Intelligence 1638, A. Hunter and S. Parsons
(eds.), 256–267.

Levi, I., 83, Consonance, Dissonance and Evidentiary Mechanisms, in Eviden-
tiary value: Philosophical, Judicial and Psychological Aspects of a Theory ,
P. Gärdenfors, B. Hansson and N. E. Sahlin, (eds.) C. W. K. Gleerups,
Lund, Sweden.

Moral, S., and Salmerón, A., 99, A Monte Carlo Algorithm for Combining
Dempster-Shafer Belief Based on Approximate Pre-computation, Proc. EC-
SQARU’99, London, UK, July 99, Lecture Notes in Artificial Intelligence
1638, A. Hunter and S. Parsons (eds.), 305–315.

Moral, S., and Wilson, N., 94, Markov Chain Monte-Carlo Algorithms for
the Calculation of Dempster-Shafer Belief, Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence, AAAI-94, Seattle, USA, July
31–August 4, 1994, 269–274.

Moral, S., and Wilson, N., 96, Importance Sampling Monte-Carlo Algorithms
for the Calculation of Dempster-Shafer Belief, Proceedings of IPMU’96, Vol.
III, 1337-1344.

Orponen, P., 90, Dempster’s rule is # P-complete, Artificial Intelligence, 44:
245–253.

Pearl, J., 88, Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference, Morgan Kaufmann Publishers Inc. 1988, Chapter 9, in par-
ticular 455-457.

Pearl, J., 90a, Bayesian and Belief-Function Formalisms for Evidential Reason-
ing: a Conceptual Analysis, Readings in Uncertain Reasoning , G. Shafer
and J. Pearl (eds.), Morgan Kaufmann, San Mateo, California, 1990, 540-
574.

55

Pearl, J., 90b, Reasoning with Belief Functions: An Analysis of Compatibility,
International Journal of Approximate Reasoning , 4(5/6), 363–390.

Provan, G., 90, A Logic-based Analysis of Dempster-Shafer Theory, Interna-
tional Journal of Approximate Reasoning , 4, 451-495.

Shafer, G., 76, A Mathematical Theory of Evidence, Princeton University Press,
Princeton, NJ.

Shafer, G., 81, Constructive Probability, Synthese, 48: 1–60.
Shafer, G., 82a, Lindley’s paradox (with discussion), Journal of the American

Statistical Association 7, No. 378, 325-351.
Shafer, G., 82b, Belief Functions and Parametric Models (with discussion), J.

Royal Statistical Society ser. B, 44, No. 3, 322-352.
Shafer, G., 84, Belief Functions and Possibility Measures, Working Paper no.163,

School of Business, The University of Kansas, Lawrence, KS, 66045, USA.
Shafer, G., 90, Perspectives on the Theory and Practice of Belief Functions,

International Journal of Approximate Reasoning 4: 323-362.
Shafer, G., 92, Rejoinders to Comments on “Perspectives on the Theory and

Practice of Belief Functions”, International Journal of Approximate Reason-
ing , 6, No. 3, 445–480.

Shafer, G. and Logan, R., 87, Implementing Dempster’s Rule for Hierarchical
Evidence, Artificial Intelligence 33: 271-298.

Shafer, G., Shenoy, P. P., and Mellouli, K., 87, Propagating Belief Functions in
Qualitative Markov Trees, International Journal of Approximate Reasoning
1: 349–400.

Shafer, G., and Tversky, A., 85, Languages and Designs for Probability Judge-
ment Cognitive Science 9: 309–339.

Shenoy, P. P. and Shafer, G., 86, Propagating Belief Functions with Local Com-
putations, IEEE Expert , 1 No.3: 43–52.

Shenoy, P. P., and Shafer, G., 90, Axioms for Probability and Belief Function
Propagation, in Uncertainty in Artificial Intelligence 4, R. Shachter, T.
Levitt, L. Kanal, J. Lemmer (eds.), North Holland, also in Readings in
Uncertain Reasoning , G. Shafer and J. Pearl (eds.), Morgan Kaufmann, San
Mateo, California, 1990, 575–610.

Smets, P., 88, Belief Functions, in Non-standard Logics for Automated Rea-
soning , P. Smets, E. Mamdami, D. Dubois and H. Prade (eds.), Academic
Press, London.

Smets, P. 89, Constructing the Pignistic Probability Function in a Context of
Uncertainty, in Proc. 5th Conference on Uncertainty in Artificial Intelli-
gence, Windsor.

Smets, P., 90, The Combination of Evidence in the Transferable Belief Model,
IEEE Trans. Pattern Analysis and Machine Intelligence 12, 447–458.

56

Smets, P., and Kennes, R., 94, The Transferable Belief Model, Artificial Intelli-
gence 66:191–234.

Tessem, B., 93, Approximations for Efficient Computation in the Theory of
Evidence, Artificial Intelligence, 61, 315–329.

Thoma, H.M., 89, Factorization of Belief Functions, Ph.D. Thesis, Department
of Statistics, Harvard University, Cambridge, MA, USA.

Thoma, H.M., 91, Belief Function Computations, 269–308 in Goodman, I.R.,
Gupta, M.M., Nguyen, H.T., Roger, G.S., (eds.), Conditional Logic in Ex-
pert Systems, New York: North-Holland.

Voorbraak, F., 89, A Computationally Efficient Approximation of Dempster-
Shafer Theory, Int. J. Man-Machine Studies, 30, 525–536.

Voorbraak, F., 91, On the justification of Dempster’s rule of combination, Ar-
tificial Intelligence 48: 171–197.

Walley, P., 91, Statistical Reasoning with Imprecise Probabilities, Chapman and
Hall, London.

Wasserman, L. A., 90, Prior Envelopes Based on Belief Functions, Annals of
Statistics 18, No.1: 454-464.

Wilson, N., 87, On Increasing the Computational Efficiency of the Dempster-
Shafer theory, Research Report no. 11, Sept. 1987, Dept. of Computing
and Mathematical Sciences, Oxford Polytechnic.

Wilson, N., 89, Justification, Computational Efficiency and Generalisation of
the Dempster-Shafer Theory, Research Report no. 15, June 1989, Dept. of
Computing and Mathematical Sciences, Oxford Polytechnic.

Wilson, N., 91, A Monte-Carlo Algorithm for Dempster-Shafer Belief, Proc.
7th Conference on Uncertainty in Artificial Intelligence, B. D’Ambrosio, P.
Smets and P. Bonissone (eds.), Morgan Kaufmann, 414-417.

Wilson, N., 92a, How Much Do You Believe?, International Journal of Approx-
imate Reasoning , 6, No. 3, 345-366.

Wilson, N., 92b, The Combination of Belief: When and How Fast, International
Journal of Approximate Reasoning , 6, No. 3, 377–388.

Wilson, N., 92c, Some Theoretical Aspects of the Dempster-Shafer Theory, PhD
thesis, Oxford Polytechnic, May 1992.

Wilson, N., 93a, The Assumptions Behind Dempster’s Rule, Proceedings of the
Ninth Conference of Uncertainty in Artificial Intelligence (UAI93), David
Heckerman and Abe Mamdani (eds.), Morgan Kaufmann Publishers, San
Mateo, California, 527–534.

Wilson, N., 93b, Decision-Making with Belief Functions and Pignistic Probabil-
ities, 2nd European Conference on Symbolic and Quantitative Approaches
to Reasoning and Uncertainty (ECSQARU-93), Kruse, R., Clarke, M. and
Moral, S., (eds.), Springer Verlag, 364–371.

57

Wilson, N., and Moral, S., 96, Fast Markov Chain Algorithms for Calculating
Dempster-Shafer Belief, 672–676, Proceedings of the 12th European Confer-
ence on Artificial Intelligence, (ECAI-96), Wahlster, W., (ed.), John Wiley
and Sons.

Xu, H., 91, An efficient implementation of the belief function propagation, Proc.
7th Conference on Uncertainty in Artificial Intelligence, B. D’Ambrosio, P.
Smets and P. Bonissone (eds.), Morgan Kaufmann, 425–432.

Xu, H., 92, An efficient tool for reasoning with belief functions, in Bouchon-
Meunier, B., Valverde, L. and Yager, R.R., (eds.) Uncertainty in intelligent
systems, North Holland, Elsevier Science, 215–224.

Xu, H., 95, Computing Marginals for Arbitrary Subsets from the Marginal
Representation in Markov Trees, Artificial Intelligence 74:177-189.

Xu, H., and Kennes, R., 94, Steps towards an Efficient Implementation of
Dempster-Shafer Theory, in Fedrizzi M., Kacprzyk J., and Yager R. R.,
(eds.) Advances in the Dempster-Shafer Theory of Evidence, John Wiley &
Sons, Inc., 153–174.

Zadeh, L. A., 84. A Mathematical Theory of Evidence (book review) The AI
Magazine 5 No. 3: 81-83.

58

