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Two Simple Examples

A vase appears to be a Ming. Let Ω = {w1,w2} represent the space
of possibilities that it is genuine (w1) or fake (w2).

A State of Ignorance

Let bel ∶ 2Ω → [0, 1] be the function given by

∅ {w1} {w2} Ω
bel 0 0 0 1

An expert then attests that it is probably fake:

A Simple Support Function

∅ {w1} {w2} Ω
belE 0 0 s 1 s > 0
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Representing Ignorance

Shafer (1976: p. 22) advertises belief functions as representing
ignorance better than probability functions.

▸ �e problem with probability functions is well known.
▸ Ignorance is represented by uniform distributions.
▸ But re�ning the space of possibilities yields inconsistency.

▸ Belief functions avoid this problem.
▸ Ignorance is represented by vacuous belief functions.
▸ Re�ning the space preserves previous assignments.

Re�ned Ignorance

Suppose we think to distinguish early Ming (w11) from late Ming
(w21 ).�en Ω = {w11 ,w21 ,w2} and ignorance is represented:

∅ {w(j)i } {w(j)i ,w
(l)
k } Ω

bel 0 0 0 1
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�e Problem of Priors

As a sort of corollary, the problem of priors is easily answered in
Dempster-Shafer�eory.

▸ Your initial degrees of belief should be vacuous: 0 everywhere
but the tautology.

▸ At any later time, your degrees of belief should be the result of
combining the vacuous belief function with your total
evidence.
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Symmetry Between Prior Belief & Evidence

Shafer (1976: p. 25) advertises DST as treating evidence and prior
opinion symmetrically.

▸ Belief-states and evidence are represented by the same sorts
of mathematical objects, belief functions.

▸ Updating is done by combining your priors (bel) and your
new evidence (belE) via a commutative operation, ⊕.

bel′ = bel⊕ belE = belE ⊕ bel

▸ Corollaries:
▸ Old and new evidence are treated the same.

▸ belE is incorporated the same way as the old evidence that
generated bel.

▸ Updating is commutative, or order-invariant.
▸ Compare the classic complaint about Je�rey’s Rule.
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Representing Evidence

Shafer’s theory is about degrees of belief based on evidence. As
such, it has at least three selling points:
1 Representing one’s evidential basis: in a sense, degrees of
belief are nothing more than the sum of one’s evidence.

▸ As we’ll see, combining the vacuous belief function (bel0)
with any other is always neutral: bel0 ⊕ bel = bel. So

bel′ = bel0 ⊕ belE1 ⊕ . . . ⊕ belEn

= belE1 ⊕ . . . ⊕ belEn

▸ In fact, one can o�en decompose a belief function into the
evidence upon which it is based.

▸ �ere are limitations, of course; more on that when we discuss
Shafer’s�eorem 5.2.
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Representing Evidence

2 Weights of evidence: the theory lends itself to a natural way of
measuring the weight of evidence for A.

▸ Suppose we have two pieces of evidence for A, belE1 and belE2 .
▸ Assume that the weights of evidence underlying these two
pieces of evidence combines additively: w3 = w1 +w2.

▸ �en we can derive (with some “innocuous” assumptions):

bel(A) = 1 − e−w(A)

▸ �is relation has some intuitively nice features, and supports
some interesting theorems/conjectures in DST.
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Representing Evidence

3 DST allows us to represent uncertain evidence, and simply.
▸ �e belief function

bel(A) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if E /⊆ A
s if E ⊆ A but A ≠ Ω
1 if A = Ω

represents evidence that supports degree of belief s in E.
▸ Compare the classic complaints about conditioning:

▸ Evidence must be certain.
▸ Evidence must have a pre-existing degree of belief.

▸ What about Je�rey’s rule? It “. . . still treats the old and new
evidence asymmetrically”.

▸ Is this a complaint about commutativity?
▸ If so, I’d say (Lange, 2000; Wagner, 2002) resolve that worry.
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�e Horse’s Mouth

“For what reasons are degrees of belief required to satisfy the
conditions imposed? [. . . ] I do not deny the possibility of a theory
superior to the theory of belief functions. I believe, though, that the
superiority of one theory of probability judgment to another can be
demonstrated only by a preponderance of examples where the best
analysis using the other.” (Shafer 1981a: 15)
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Belief Functions

De�nition: Belief Function

A function bel ∶ 2Ω → [0, 1] is a belief function i�
(B1) bel(∅) = 0
(B2) bel(Ω) = 1
(B3) For all A1, . . . ,An ⊆ Ω,

bel(A1 ∪ . . . ∪An) ≥ ∑
I⊆{1,...,n}

(−1)∣I∣+1bel(⋂
i∈I

Ai)

▸ (B1) and (B2) are the same as in probability theory.
▸ So what’s the deal with (B3)?
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Inclusion-Exclusion

Recall the inclusion-exclusion rule from probability theory:

p(A ∪ B) = p(A) + p(B)
−p(A ∩ B)

p(A ∪ B ∪ C) = p(A) + p(B) + p(C)
−p(A ∩ B) − p(A ∩ C) − p(B ∩ C)
+p(A ∩ B ∩ C)

⋮

p(A1 ∪ . . . ∪An) = ∑
I⊆{1,...,n}

(−1)∣I∣+1p(⋂
i∈I

Ai)
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= vs. ≥

So (B3) is DST’s analogue of the inclusion-exclusion rule:

p(A1 ∪ . . . ∪An) = ∑
I⊆{1,...,n}

(−1)∣I∣+1p(⋂
i∈I

Ai)

vs.

bel(A1 ∪ . . . ∪An) ≥ ∑
I⊆{1,...,n}

(−1)∣I∣+1bel(⋂
i∈I

Ai)

▸ Recall that the inclusion-exclusion principle can replace the
additivity axiom of probability theory.

▸ So the di�erence between DST and probability theory comes
down to replacing a single = with a ≥!
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But Oh, What a Di�erence. . .

A striking (and annoying) novelty of DST is that the values of the
atoms do not determine the whole distribution.

▸ If Ω = {w1,w2,w3}, the following is a belief function:
∅ {wi} {wi,wj} Ω

bel 0 1/4 3/4 1 i ≠ j

▸ So is the vacuous function:
A Ω

bel 0 1 A ≠ Ω

▸ Another handy trick you’ll miss:

p(A) = 1 − p(A)

In general, we say that belief functions are superadditive:

bel(A ∪ B) ≥ bel(A) + bel(B), A ∩ B = ∅
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How Annoying!

As a result, visual representation is messier:
▸ We can’t visualize belief distributions as “muddy” venn
diagrams, in the manner of (van Fraassen, 1989).

▸ We can use lattices instead:

{w1} {w2} {w3}

{w1,w2} {w1,w3} {w2,w3}

Ω

.1 .1 .1

.3 .3 .3

1.0
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Mass Functions

De�nition: Mass Function
A functionm ∶ 2Ω → [0, 1] is a mass function i�

(M1) m(∅) = 0
(M2) ∑A⊆Ωm(A) = 1

Representation�eorem

Given a mass functionm,

belm(A) = ∑
B⊆A

m(B)

is a belief function.
If Ω is �nite and bel is a belief function, there is a unique mass

functionm,
bel(A) = ∑

B⊆A
m(B)
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Understanding Mass Functions

▸ Pictorially, mass functions are like probability distributions
over the lattice:

{w1} {w2} {w3}

{w1,w2} {w1,w3} {w2,w3}

Ω

.1 .1 .1

.2 .2 .2

.1

▸ Intuitively, mass is the amount of “belief that one commits
exactly to A, not the total belief that one commits to A.”
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Commonality Functions

De�nition: Commonality Function

Ifm is a mass function, then its commonality function is

Q(A) = ∑
A⊆B, B⊆Ω

m(B)

Representation�eorem

Given bel and its corresponding Q,

bel(A) = ∑
B⊆A

(−1)∣B∣Q(B)

Q(A) = ∑
B⊆A

(−1)∣B∣bel(B)
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Plausibility Functions

De�nition: Plausibility Function

If bel is a belief function, its plausibility function is

plaus(A) = 1 − bel(A)

It’s the “plausibility” of A in that it’s the degree to which the
evidence fails to support its negation.

Partial Representation�eorem (Dempster, 1967)

Every belief function bel is a lower probability function, with plaus
its corresponding upper probability function.

▸ Some lower probability functions are not belief functions.
▸ Lower probabilities don’t always satisfy (B3)
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Shafer’s Taxonomy of Belief Functions

Belief Functions

Support Functions Quasi Support Functions

Separable Not Separable Bayesian
(Nontrivial)

Non-Bayesian

Simple Not Simple
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Dempster’s Rule

De�nition: Dempster Combination

Ifm1 andm2 are mass functions, their combination is denoted
m1 ⊕m2 and is de�nedm1 ⊕m2(∅) = 0, and for non-empty A:

(m1 ⊕m2)(A) = c ∑
B,C∶B∩C=A

m1(B)m2(C)

where c is a normalizing constant.

�e normalizing constant is necessary to account for “leaks”:
▸ Sometimes B ∩ C = ∅ butm1(B)m2(C) > 0.
▸ Because of (M1), this mass must be thrown out.
▸ So we have

c =
⎛
⎝
1 − ∑

B,C∶B∩C=∅
m1(B)m2(C)

⎞
⎠

−1
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Visualizing Dempster’s Rule

Dempster’s rule is hard to grasp intuitively, but Shafer provides a
helpful visualization:

m2

m1

0

1

1A1 A2 ⋯ An

B1

B2

⋮

Bm

m1(An)m2(Bm):
An ∩ Bm

m1(A1)m2(B2):

A1 ∩ B2
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Some Basics

▸ m1 ⊕m2 is unde�ned when c’s denominator is 0.
▸ m1 ⊕m2 is always a mass function.
▸ We write bel1 ⊕ bel2 form1 ⊕m2’s belief function.
▸ Combination is associative and commutative:

bel1 ⊕ (bel2 ⊕ bel3) = (bel1 ⊕ bel2)⊕ bel3
bel1 ⊕ bel2 = bel2 ⊕ bel1

▸ Vacuous combination has no e�ect:

bel⊕ bel0 = bel

▸ If bel = bel1 ⊕ bel2 with corresponding commonality functions
Q,Q1,Q2, then

Q(A) = cQ1(A)Q2(A)
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Dempster Conditioning

De�nition: Dempster Conditioning

Let belE be the belief function corresponding to the mass function
assigningm(E) = 1.�en

bel(A∣E) =df bel⊕ belE

�eorem

bel(A∣E) = bel(A ∪ E) − bel(E)
1 − bel(E)

plaus(A∣E) = plaus(A ∩ E)
plaus(E)
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Simple Support

A quick de�nition:

De�nition: Simple Support Function

A belief function is a simple support function i�

bel(A) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if S /⊆ A
s if S ⊆ A but A ≠ Ω
1 if A = Ω

We say that bel is focused on S.

▸ Clearly, the corresponding mass function is

m(A) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s if A = S
1 − s if A = Ω
0 otherwise
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Special Case: Homogeneous Support

Consider two simple support functions both focused on A, with
support degrees s1 and s2:

A Ω
A A ∩A = A A ∩Ω = A
Ω Ω ∩A = A Ω ∩Ω = Ω

m2(A) = s2 m2(Ω) = 1 − s2
m1(A) = s1 s1s2 s1(1 − s2)

m1(Ω) = 1 − s1 s2(1 − s1) (1 − s1)(1 − s2)

(m1 ⊕m2)(A) = s1 + s2 − s1s2
(m1 ⊕m2)(Ω) = 1 − (m1 ⊕m2)(A)

▸ Notice that (m1 ⊕m2)(A) > s1, s2
▸ Notice that c = 1.
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Special Case: Heterogeneous Support

Two simple support functions focused on distinct A and B when
A ∩ B ≠ ∅:

B Ω
A A ∩ B A
Ω B Ω

m2(B) = s2 m2(Ω) = 1 − s2
m1(A) = s1 s1s2 s1(1 − s2)

m1(Ω) = 1 − s1 s2(1 − s1) (1 − s1)(1 − s2)

(m1 ⊕m2)(A) = s1(1 − s2)
(m1 ⊕m2)(B) = s2(1 − s1)

(m1 ⊕m2)(A ∩ B) = s1s2
(m1 ⊕m2)(Ω) = (1 − s1)(1 − s2)

▸ Again, c = 1.
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Special Case: Con�icting Support

Two simple support functions focused on distinct A and B when
A ∩ B = ∅. Now c = (1 − s1s2).

B Ω
A ∅ A
Ω B Ω

m2(B) = s2 m2(Ω) = 1 − s2
m1(A) = s1 s1s2 s1(1 − s2)

m1(Ω) = 1 − s1 s2(1 − s1) (1 − s1)(1 − s2)

(m1 ⊕m2)(A) = s1(1 − s2)/(1 − s1s2)
(m1 ⊕m2)(B) = s2(1 − s1)/(1 − s1s2)
(m1 ⊕m2)(Ω) = (1 − s1)(1 − s2)/(1 − s1s2)

▸ Notice that (m1 ⊕m2)(A) < m1(A), and similarly for B.
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Separable Support Functions

De�nition: Separable Support Function

A belief function is separable i� it can be obtained by combining
one or more simple support functions.

Separability�eorem (Shafer 1976: 90)

If bel is a non-vacuous, separable support function, there exists a
unique collection of non-vacuous, simple support functions
bel1, . . . , beln such that

(1) bel = bel1 ⊕ . . . ⊕ beln
(2)�e focus of each beli, Si, is such that bel(Si) > 0
(3) beli and belj have di�erent foci when i ≠ j.

▸ Note: separability does not assure us that bel’s actual history
can be recovered; witness condition (3).

▸ Recall the results of homogeneous combination.
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Dempster Meets Je�rey

Partial Representation�eorem (Shafer, 1981a)

Every Je�rey update can be represented as a Dempster update.
Whenever two probability functions are related by

q(⋅) =∑
i
p(⋅∣Ei)q(Ei)

for a partition {Ei}, there is a belief function bel such that
q = p⊕ bel.

▸ bel will not be unique, generally speaking.
▸ bel’s focal elements will be unions of the Ei.
▸ Shafer (1981b) argues that the Dempster representation has
the advantage of representing the evidence on its own, before
prior belief is factored in. (Cf. (Field, 1978; Garber, 1980;
Christensen, 1992; Lange, 2000; Wagner, 2002).)
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Reminder: Taxonomy of Belief Functions

Belief Functions

Support Functions Quasi Support Functions

Separable Not Separable Bayesian
(Nontrivial)

Non-Bayesian

Simple Not Simple
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Re�nements

We’ve characterized the simple and separable support functions.
What about the remaining support functions?

▸ Here we need the notion of a re�nement; the division of a
space’s atoms into sub-possibilities.

De�nition: Re�nement

A map r ∶ 2Ω → 2Θ is a re�nement i�
(1) r({w}) ≠ ∅ for all w ∈ Ω
(2) r({w}) ∩ r({w′}) = ∅ if w ≠ w′

(3) ⋃w∈Ω r({w}) = Θ
(4) r(A) = ⋃w∈A r({w})

Intuitively, r takes Ω’s atoms to a nontrivial partition (1–3), and any
larger set to the union of the sets corresponding to its atoms (4).
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Restrictions

We can now characterize the restriction of a belief function over a
re�ned space to the space from which it was re�ned.

De�nition: Restriction
Let r ∶ 2Ω → 2Θ be a re�nement, and bel a belief function de�ned
over Θ.�e restriction of bel to Ω is written bel∣2Ω, and is de�ned

bel∣2Ω(A) = bel(r(A))

�eorem (Shafer, 1976: 126)

�e restriction of a belief function is always a belief function.
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Support Functions

De�nition: Support Function

A belief function bel over Ω is a support function i� there is a
re�nement of Ω into Θ and a separable support function on 2Θ,
bel′, such that bel∣2Ω = bel′.

▸ Clearly, separable support functions are support functions.
▸ But some (even basic) support functions aren’t separable.

Example: A Non-Separable Support Function

Suppose Ω = {w1,w2,w3} and

m({w1,w2}) = ({w2,w3}) = m(Ω) = 1/3

�en belm is a support function, but is not separable.

�eorems 7.1 and 7.2 of Shafer (1976: 143) verify this.
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Weighing Evidence

Given three natural assumptions, we can construct a nice measure
of evidential weight.

1 Existence: the value of a simple support function focused on
A is determined by a weight of evidence for A, w.

▸ �ere is some function such that g(w) = s.
2 Scale: weights of evidence vary from 0 to∞.

▸ g ∶ [0,∞]→ [0, 1].
3 Additivity: given two simple support functions focused on A,
their combination is determined by the sum of their
respective weights.

▸ g(w1 +w2) = (bel1 ⊕ bel2)(A).
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Weighing Evidence

�eorem (Shafer 1976: 77-8)

If g satis�es the following:
g ∶ [0,∞]→ [0, 1]
If g(w1) = s2, g(w2) = s2, then g(w1 +w2) = s1 + s2 − s1s2

then g(w) = 1 − ecw for any constant c.

Choosing c = 1 for convenience, we measure weight by

g(w) = 1 − e−w
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Weighing Con�ict

Two simple support functions con�ict to the extent that they
assign mass to incompatible propositions.

▸ �e more mass thrown away

κ = ∑
B,C∶B∩C=∅

m1(B)m2(C)

the greater the weight of con�ict.

De�nition:Weight of Con�ict

Con(bel1, bel2) = log( 1
1 − κ

)



DST

Weisberg

Motivations

Statics

Dynamics

Taxonomy

Decisions

References

�e Weight-of-Con�ict Conjecture

De�nition:Weight of Internal Con�ict

If bel is a separable support function, it’s weight of internal con�ict,
Wbel, is Con(bel1, . . . , beln), where bel1 ⊕⋯⊕ beln is bel’s
canonical decomposition into simple support functions.

Conjecture (Shafer 1976: 96)

Let bel1 and bel2 be separable support functions with commonality
functions Q1,Q2, and weights of internal con�ictW1,W2.�en, if
Q1(A) ≤ Q2(A) for all A,W1 ≥W2.
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Limits of Sequences of Belief Functions

Recall how to take the limit of a sequence of functions:

De�nition: Limit of a Sequence of Functions

Suppose f1, f2, . . . is an in�nite sequence of functions.�en its limit
is f i�

lim
i→∞

fi(A) = f (A)

for all A in the domain.

�en we have the following theorem about belief functions:

�eorem (Shafer 1976: 200)

If a sequence of belief functions has a limit, the limit is a belief
function.
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Quasi Support Functions

We’re �nally in a position to characterize the remaining belief
functions, the quasi support functions:

▸ �ey are the limits of sequences of separable support
functions over a more re�ned space.

�eorem (Shafer 1976: 200)

If bel is not a support function, it is the restriction of a limit of a
sequence of separable support functions.

�at is, there is a re�nement of Ω into Θ and a sequence of
separable support functions bel1, bel2, . . . on Θ such that

bel = ( lim
i→∞

beli) ∣2Ω
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Two Notes for Later

Two things to note for use in a moment:
1 Given that the beli are separable,

( lim
i→∞

beli) ∣2Ω = lim
i→∞

(beli∣2Ω)

2 Each beli∣2Ω is a support function.
So we can also say that the above bel is the limit of a sequence of
support functions.
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Some Examples

As it turns out, all non-trivial probability functions are quasi
support functions.

�eorem (Shafer 1976: 201)

If bel is a belief function with at least one A ⊆ Ω such that
bel(A) > 0 and bel(A) + bel(A) = 1, then bel is a quasi support
function.

But other examples abound, even very elementary ones.

Example: A Non-probabilistic Quasi Support Function

Let Ω = {w1,w2,w3} andm({w1,w2}) = m({w2,w3}) = 1/2.�en
belm is not a support function, i.e. it is a quasi support function.

▸ Follows from Shafer’s�eorem 7.1; again, I’m not sure
whether there is a more direct way to see this.
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Weights of Impinging Evidence

De�nition: Impingement Function

If bel is a separable support function with w its corresponding
weight-of-evidence function, its impingement function is de�ned

V(A) = ∑
B∶A/⊆B

w(B)

V is the weight of evidence for propositions compatible with A.
▸ Weights of evidence are additive, by assumption.

Intuitively, V(A) is the weight of evidence impinging on A.
▸ Each w(B) “impugns” part of A, since A /⊆ B.
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In�nite, Contradictory Evidence

�eorem (Shafer 1976: 220 –1)

If bel1, bel2, . . . is a sequence of separable support functions whose
limit is not a separable support function, and V1,V2, . . . are the
corresponding impingement functions, then

lim
i→∞

Vi({w}) = ∞

for every w ∈ Ω.

“Because of the dubious nature of such in�nite
contradictory weights of evidence, it is natural to call a
belief function a quasi support function whenever it is not
a support function but is the limit of a sequence of
separable support functions or the restriction of such a
limit.” (Shafer 1976: 201)
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TwoWorries

Is this interpretation of the results too quick? Two reasons I’m
suspicious:
1 We haven’t shown that quasi support functions are the limits
of sequences of separable support functions, only that they
are the restrictions of such limits.

▸ Some quasi support functions are limits of sequences of
separable support functions, not merely restrictions of such
limits.

▸ But some are only “indirectly” so, i.e. restrictions of such
limits.

▸ (Or, using our earlier two notes, limits of sequences of support
functions, though not necessarily separable ones.)

How does the theorem tell us that quasi support functions
obtainable only as restrictions represent “in�nite
contradictory weights of evidence”?
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TwoWorries (continued)

Is this interpretation of the results too quick? Two reasons I’m
suspicious:
2 But suppose we focus just on those quasi support functions
that are directly limits of separable support functions.

�at the weights supporting contradictory propositions
tend to in�nity does not obviously entail that the function at
the limit itself represents such evidence.

▸ For one thing, these are the limits of in�nite sequences, not
in�nite combinations.

▸ For another, they are limits at in�nity, and the �nite-
trans�nite gap is notoriously tricky.

▸ Examples: Adam & Eve, In�nity Bank™
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In�nite Evidence & Statistics

Barring these concerns, the result is quite striking:
▸ Bayesian rationality demands that we believe as if we had
in�nite evidence for contradictory propositions!

How can this be?

“�ose who are accustomed to thinking of partial beliefs
based on chances as paradigmatic may be startled to see
them relegated to a peripheral role and classi�ed among
those partial beliefs that cannot arise from actual, �nite
evidence. But students of statistical inference are quite
familiar with the conclusion that a chance cannot be
evaluated with less than in�nite evidence.” (Shafer 1976:
201)
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Yea Ok, But Contradictory?!

What about the fact that such hypothetical evidence is not just
in�nite, but supporting of contradictory propositions?

“To establish a value between zero and one as the chance
for a given outcome of an aleatory process, one must
obtain the results of an in�nite sequence of independent
trials of the process [. . . ] One could ask for no better
example of in�nite, precisely balanced and unobtainable
evidence.” (Shafer 1976: 201-2)

In other words: if we had had enough evidence to determine the
true chances for the next �ip of a coin, we would have evidence of
in�nite weight that the next �ip will be heads.

▸ Notice a corollary: it is possible to have evidence of in�nite
weight supporting no con�dence.
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�ree Approaches

�ere are at least two broad approaches to constructing a decision
rule for DST:
1 Fall back on the theory of upper and lower probabilities.
2 Collapse the belief function into a probability function.
3 Make assumptions justi�ed by speci�cs of the application.
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Upper & Lower Expectations

Belief functions can be seen as inducing expectation intervals:
▸ For every belief function bel, there is a canonical set of
probability functions P such that bel = P∗ and plaus = P∗:

P = {p ∶ p(A) ≥ bel(A) for all A}

▸ So we can de�ne Ebel = EP and Eplaus = EP.
▸ We can then fall back on rules like Total Domination.

An important caveat:
▸ Generally, several Ps can be associated with a given bel.
▸ Some decision rules, like Levi’s, depend not only on the
interval [P∗,P∗], but on the particular contents of P.

▸ For such decision rules, which P we associate with bel
matters, so a canonical translation is required.
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Cutting Out the Middle Man

Can we avoid the detour through upper/lower probabilities?
▸ Shafer and many others explicitly reject the upper/lower
probability interpretation of belief functions.

▸ It’d be computationally easier to cut out the middle man.
Answer: yes!

▸ Recall that probabilistic expectation can be re-expressed

Ep(X) =
n
∑
i
p(X = xi)xi

= x1 +
n−1
∑
i=1

p(X > xi)(xi+1 − xi)
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Cutting Out the Middle Man (continued)

We can de�ned DST’s expected values in the same way:

De�nition: Ebel and Eplaus

Ebel(X) = x1 +
n−1
∑
i=1

bel(X > xi)(xi+1 − xi)

Eplaus(X) = x1 +
n−1
∑
i=1

plaus(X > xi)(xi+1 − xi)

�eorem (Schmeidler 1986)

If P is the canonical set of probability functions associated with
bel, then Ebel = EP and Eplaus = EP.
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�e Transferable Belief Model

Smets and Kennes (1994) proposed the TBM, which distinguishes
two levels of degree of belief:

▸ Credal: obeys rules of of DST.
▸ Pignistic: obeys rules of probability.

When a decision must be made, we “�atten” the mass function into
a probability function, and use good ol’ expected utility.

De�nition: Pignistic Probability (TBM)

Given a mass functionm, the pignistic probability function
corresponding tom, pm, is de�ned:

pm({w}) = ∑
A∶w∈A

m(A)
∣A∣

for all w ∈ Ω, where ∣A∣ is the cardinality of A.
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Worries About TBM

Two worries about the TBM:
1 Frame Dependence: the pignistic probabilities obtained from
a given mass function depend heavily on the granularity of Ω.

▸ Mass is distributed according to the size of A.
▸ So a �ner division of Ameans a higher pm(A).
▸ So the problems with the principle of indi�erence e�ectivey
return in the decision theoretic context.

2 Dutch Books: pignistic probabilities are dynamically Dutch
bookable.

▸ �e dynamics of pignistic probabilities do not obey
conditionalization.

▸ Smets (1994) insists that dynamic Dutch books don’t arise
because of the distinction between “hypothetical” facts and
“factual” facts. (?!?)

▸ See Snow (1998) for a rebuttal.
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Making Assumptions

Strat (1994) proposes associating a parameter ρ with an
“uncommitted” mass assignment.

▸ ρ varies from 1 to 0 according as we think nature will resolve
the “unknown” probability “favourably”.

▸ Simplest case: m assigns all its values to atoms but one.

Eρ(X) = Ebel(X) + ρ[Eplaus(X) − Ebel(X)]

▸ ρ is reminiscent of, and inspired by, Hurwicz’s (1952)
optimism index.

▸ Lesh (1986) makes a similar proposal; Strat views Lesh’s as
di�erring in two respects:

▸ Lesh’s parameter re�ects empirical commitments.
▸ Lesh’s parameter is used for a linear interpolation of the range
of possible probabilities; Strat’s for the range of expected
values.
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Other Topics: Independence

De�ning independence in DST is trickier than for probability
theory.

▸ �e usual de�nition, bel(A∣B) = bel(A), doesn’t work.
▸ Several other de�nitions have been proposed.
▸ Question: how do they interact with updating?

▸ Probabilistic independence on the evidence is preserved by
conditioning rules.

▸ I think this is deeply problematic for Bayesianism. (Weisberg
2009, manuscript)

▸ Does something analogous hold of Dempster’s rule? See (Ben
Yaghlane, Smets and Mellouli 2000, 2002) for some
discussion.
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Other Topics: Interpretation

How should we understand ‘degree of belief ’ in DST?
▸ Bayesians provide many heuristics and operationalizations to
help us get a grip on the notion of credence.

▸ Shafer (1981a,b) and Shafer and Tversky (1983, 1985) o�er a
heuristic where chancy translation is the canonical scale.

▸ Pearl (1988) argues for an interpretation in terms of
probability of provability.

▸ See (Smets 1994) for a survey of some standard
interpretations.



DST

Weisberg

Motivations

Statics

Dynamics

Taxonomy

Decisions

References

References I

[1] Boutheina Ben Yaghlane, Philipe Smets, and Khaled Mellouli.
Independence concepts for belief functions.
In Proceedings 8th International Conference IPMU Information Processing and Management of Uncertainty
in Knowledge-based Systems, volume 1, pages 357–364, 2000.

[2] Boutheina Ben Yaghlane, Philipe Smets, and Khaled Mellouli.
Belief function independence: I. the marginal case.
International Journal of Approximate Reasoning, 29(1):47–70, 2002.

[3] David Christensen.
Confirmational holism and bayesian epistemology.
Philosophy of Science, 59, 1992.

[4] Arthur P. Dempster.
Upper and lower probabilities induced by a multivalued mapping.
Annals of Mathematical Statistics, 38(2):325–339, 1967.

[5] Hartry Field.
A note on jeffrey conditionalization.
Philosophy of Science, 45, 1978.

[6] Daniel Garber.
Field and jeffrey conditionalization.
Philosophy of Science, 47, 1980.

[7] Marc Lange.
Is jeffrey conditionalization defective by virtue of being non-commutative? remarks on the sameness of
sensory experience.
Synthese, 123(3):393–403, 2000.



DST

Weisberg

Motivations

Statics

Dynamics

Taxonomy

Decisions

References

References II

[8] Stephen A. Lesh.
An Evidential Theory Approach to Judgment-Based Decision Making.
Phd thesis: Department of forestry and environmental studies, Duke University, 1986.

[9] Judea Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., 1988.

[10] D. Schmeidler.
Integral representation without uncertainty.
Proceedings of the American Mathematical Society, 97(2):255–261, 1986.

[11] Glenn Shafer.
A Mathematical Theory of Evidence.
Princeton University Press, 1976.

[12] Glenn Shafer.
Constructive probability.
Synthese, 48(1):1–60, 1981.

[13] Glenn Shafer.
Jeffrey’s rule of conditioning.
Philosophy of Science, 48(3):337–362, 1981.

[14] Glenn Shafer and Amos Tversky.
Weighing evidence: The design and comparison of probability thought experiments.
Technical report, Department of Psychology, Stanford University, 1983.

[15] Glenn Shafer and Amos Tversky.
Languages and designs for probability judgment.
Cognitive Science, 9(3):309–339, 1985.



DST

Weisberg

Motivations

Statics

Dynamics

Taxonomy

Decisions

References

References III

[16] Philipe Smets.
What is dempster-shafer’s model.
In Ronald R. Yager, editor, Advances in the Dempster-Shafer Theory of Evidence. John Wiley and Sons,
Inc., 1994.

[17] Philipe Smets and Robert Kennes.
The transferable belief model.
Artificial Intelligence, 66(2):191–234, 1994.

[18] Paul Snow.
The vulnerability of the transferable belief model to dutch books.
Artificial Intelligence, 105(2):345–354, 1998.

[19] Thomas M. Strat.
Decision analysis using belief functions.
In Ronald R. Yager, editor, Advances in the Dempster-Shafer Theory of Evidence. John Wiley and Sons,
Inc., 1994.

[20] Carl Wagner.
Probability kinematics and commutativity.
Philosophy of Science, 69:266–278, 2002.

[21] Jonathan Weisberg.
Commutativity or holism: A dilemma for conditionalizers.
British Journal for the Philosophy of Science, 60(4):793–812, 2009.

[22] Jonathan Weisberg.
Updating, undermining, and independence.
manuscript.


	Motivations
	Statics
	Dynamics
	Taxonomy
	Decisions
	References

