Recursion in SQL3 (SQL99)

Ex: Ancestors

 Relation: ParentOf(parent,child)

 Query: Find all of Mary's ancestors

Q: Can we write the query in SQL2?

Ex: Company hierarchy

 Relations: Employee(ID, salary)

 Manager(mgrID, empID)

 Project(name, mgrID)

 Query: What's the total salary cost of project "X"

Q: Can we write the query in SQL2?

Ex: Airline flights

 Relation: Flight(origin, destination, airline, cost)

 Query: Find the cheapest way to fly from origin A to destination B

Q: Can we write the query in SQL2?

SQL-99 WITH statement

WITH R1 AS (query),

 R2 AS (query),

 ...,

 Rn AS (query)

<query involving R1, R2, ..., Rn and other relations>

Idea: (1) Compute R1, R2, ..., Rn into temporary relations

 (2) Evaluate the query involving R1,, Rn and other relations

 (3) Destroy R1, R2, ..., Rn

Can also specify schema for Ri's:

WITH R1(A1, A2, ..., Am) AS (query), ...

Ex: WITH Berk AS (SELECT ID, date FROM Apply WHERE location = "Berkeley"),

 SC AS (SELECT ID, date FROM Apply WHERE location = "SC")

 SELECT ID, Berk.date AS Bdate, SC.date AS SCdate

 FROM Berk, SC

 WHERE Berk.ID = SC.ID

WITH statement looks like "temporary view definitions" for syntactic

 convenience.

-> BUT: The Ri's can be recursive or mutually recursive

Must tag with keyword RECURSIVE

Recursion usually achieved through UNION of base case + recursion

Ex: Find Mary's ancestors from ParentOf(parent,child)

 WITH RECURSIVE Ancestor(anc,desc) AS

 ((SELECT parent as anc, child as desc FROM ParentOf)

 UNION

 (SELECT Ancestor.anc, ParentOf.child as desc

 FROM Ancestor, ParentOf

 WHERE Ancestor.desc = ParentOf.parent))

 SELECT anc FROM Ancestor WHERE desc = "Mary"

<show procedural evaluation with fixpoint>

Ex: Total salary cost of Project "X"

 WITH RECURSIVE Superior AS

 ((SELECT * from Manager)

 UNION

 (SELECT S.mgrID, M.empID

 FROM Superior S, Manager M

 WHERE S.empID = M.mgrID))

 SELECT sum(salary)

 FROM Employee

 WHERE ID IN

 ((SELECT mgrID FROM Project WHERE name = 'X')

 UNION

 (SELECT empID FROM Project, Superior

 WHERE Project.name = 'X' AND Project.mgrID = Superior.mgrID))

<show example data and computation>

Alternative formulation, more specific to this query:

 WITH RECURSIVE Xemps(ID) AS

 ((SELECT mgrID AS ID FROM Project WHERE name = "X")

 UNION

 (SELECT empID AS ID

 FROM Manager

 WHERE mgrID IN (Select ID FROM Xemps)))

 SELECT sum(salary)

 FROM Employee

 WHERE ID IN (SELECT ID FROM Xemps)

<show computation>

Nonlinear recursion

SQL-99 only requires support of "linear" recursion: each FROM has at

most one reference to a recursively-defined relation.

Nonlinear version of Ancestor:

 WITH RECURSIVE Ancestor(anc,desc) AS

 ((SELECT parent as anc, child as desc FROM ParentOf)

 UNION

 (SELECT A1.anc, A2.desc

 FROM Ancestor A1, Ancestor A2

 WHERE A1.desc = A2.anc))

 SELECT anc FROM Ancestor WHERE desc = "Mary"

- Looks cleaner

- Executing it literally converges to fixed-point faster than linear

 version

-> But not required in SQL-99 because general case of nonlinear recursion

 is hard/expensive

Mutual recursion

Contrived example:

Sales(ID,amt)

- Employees who sold > 10,000 and don't get a bonus go to the banquet

- Employees who sold > 20,000 and don't go to the banquet get a bonus

WITH RECURSIVE Banquet(ID) AS

 (SELECT ID

 FROM Sales

 WHERE amt > 10,000

 AND ID NOT IN (SELECT ID FROM Bonus)),

 RECURSIVE Bonus(ID) AS

 (SELECT ID

 FROM Sales

 WHERE amt > 20,000

 AND ID NOT IN (SELECT ID FROM Banquet)),

<any query>

Q: What's wrong?

Problem: "Bad mix" of recursion and negation (NOT IN).

Solution: SQL-99 does not allow mutual recursion if one relation depends

"negatively" on another (i.e., insertions into one can cause deletions

from the other other)

Other tricky cases of mutual recursion also disallowed.

Ex: Given Q(x)

 P(x) = Q(x) UNION R(x)

 R(x) = P(x) UNION sum(P(x))

Q: What happens?

