On-Line Application Processing

Warehousing
Data Cubes
Data Mining

Overview =©

@ Traditional database systems are tuned
to many, small, simple queries.

@ Some new applications use fewer, more
time-consuming, complex queries.

@ New architectures have been developed
to handle complex “analytic” queries
efficiently.

The Data Warehouse °

@ The most common form of data
integration.

+ Copy sources into a single DB (warehouse)
and try to keep it up-to-date.

+ Usual method: periodic reconstruction of
the warehouse, perhaps overnight.

+ Frequently essential for analytic queries.

OLTP *

@ Most database operations involve On-
Line Transaction Processing (OTLP).

+ Short, simple, frequent queries and/or
modifications, each involving a small
number of tuples.

* Examples: Answering queries from a Web
interface, sales at cash registers, selling
airline tickets.

OLAP =

Of increasing importance are On-Line
Application Processing (OLAP) queries.

+ Few, but complex queries --- may run for
hours.

+ Queries do not depend on having an
absolutely up-to-date database.

@ Sometimes called Data Mining.

OLAP Examples =

1. Amazon analyzes purchases by its
customers to come up with an
individual screen with products of
likely interest to the customer.

2. Analysts at Wal-Mart look for items
with increasing sales in some region.

Common Architecture °

@ Databases at store branches handle
OLTP.

@ Local store databases copied to a
central warehouse overnight.

@ Analysts use the warehouse for OLAP.

Star Schemas °

@ A star schema is a common organization

for data at a warehouse. It consists of:

1. Fact table: a very large accumulation of
facts such as sales.
+ Often “insert-only.”

2. Dimension tables : smaller, generally static
information about the entities involved in
the facts.

Example: Star Schema °

@ Suppose we want to record in a
warehouse information about every
beer sale: the bar, the brand of beer,
the drinker who bought the beer, the
day, the time, and the price charged.

@ The fact table is a relation:
Sales(bar, beer, drinker, day, time, price)

Example, Continued °

@ The dimension tables include
information about the bar, beer, and
drinker “dimensions”:

Bars(bar, addr, license)
Beers(beer, manf)
Drinkers(drinker, addr, phone)

Dimensions and Dependent
Attributes

€ Two classes of fact-table attributes:
1. Dimension attributes : the key of a
dimension table.
2. Dependent attributes : a value
determined by the dimension attributes
of the tuple.

Example: Dependent Attribute °

@ price is the dependent attribute of our
example Sales relation.

@1t is determined by the combination of
dimension attributes: bar, beer, drinker,
and the time (combination of day and
time attributes).

Approaches to Building
Warehouses

1. ROLAP = “relational OLAP”: Tune a
relational DBMS to support star
schemas.

2. MOLAP = “multidimensional OLAP":
Use a specialized DBMS with a model
such as the “data cube.”

ROLAP Techniques -

1. Bitmap indexes : For each key value
of a dimension table (e.g., each beer
for relation Beers) create a bit-vector
telling which tuples of the fact table
have that value.

2. Materialized views : Store the answers
to several useful queries (views) in the
warehouse itself.

Typical OLAP Queries °

@ Often, OLAP queries begin with a “star join":
the natural join of the fact table with all or
most of the dimension tables.

@®Example:

SELECT *

FROM Sales, Bars, Beers, Drinkers

WHERE Sales.bar = Bars.bar AND
Sales.beer = Beers.beer AND
Sales.drinker = Drinkers.drinker;

Typical OLAP Queries -—- 2 °

@ The typical OLAP query will:
1. Start with a star join.

2. Select for interesting tuples, based on
dimension data.

3. Group by one or more dimensions.
4. Aggregate certain attributes of the result.

Example: OLAP Query °

@ For each bar in Palo Alto, find the total
sale of each beer manufactured by
Anheuser-Busch.

2. Filter: addr = “Palo Alto” and manf =
“Anheuser-Busch”.

3. Grouping: by bar and beer.

4. Aggregation: Sum of price.

Example: In SQL °

SELECT bar, beer, SUM(price)
FROM Sales NATURAL JOIN Bars
NATURAL JOIN Beers
WHEREaddr ='Palo Alto’ AND
manf ='Anheuser - Busch’
GROUP BY bar, beer;

Using Materialized Views °

@ A direct execution of this query from
Sales and the dimension tables could
take too long.

@ If we create a materialized view that
contains enough information, we may
be able to answer our query much
faster.

Example: Materialized View °

€ Which views could help with our query?
@ Key issues:
1. It must join Sales, Bars, and Beers, at least.
2. It must group by at least bar and beer.

3. It must not select out Palo-Alto bars or
Anheuser-Busch beers.

4. It must not project out addr or manf.

Example --- Continued °

@ Here is a materialized view that could help:
CREATE VIEW BABMS(bar, addr ,
beer, manf, sales) AS
SELECT bar, addr , beer, manf,
SUM(price) sales
FROM Sales NATURAL JOIN Bars
NATURAL JOIN Beers

GROUP BY bar, [addr | beer, [man]

@ Since bar -> addr and beer -> manf, there is no real 21
grouping. We need addr and manf in the SELECT.

Example --- Concluded °

@ Here's our query using the materialized
view BABMS:

SELECT bar, beer, sales

FROM BABMS

WHEREaddr ='Palo Alto’ AND
manf =’Anheuser - Busch’;

MOLAP and Data Cubes *

@ Keys of dimension tables are the
dimensions of a hypercube.

+ Example: for the Sales data, the four
dimensions are bars, beers, drinkers, and
time.

@ Dependent attributes (e.g., price)
appear at the points of the cube.

Marginals

@ The data cube also includes
aggregation (typically SUM) along the
margins of the cube.

€ The marginals include aggregations
over one dimension, two dimensions,...

Example: Marginals °

@ Our 4-dimensional Sales cube includes
the sum of price over each bar, each
beer, each drinker, and each time unit
(perhaps days).

@ It would also have the sum of price
over all bar-beer pairs, all bar-drinker-
day triples,...

Structure of the Cube °

@ Think of each dimension as having an
additional value *.

@ A point with one or more *’s in its
coordinates aggregates over the
dimensions with the *’s,

& Example: Sales(*Joe’s Bar”, “Bud”, *, *)
holds the sum over all drinkers and all
time of the Bud consumed at Joe's.

Drill-Down °

@ Drill-down = “de-aggregate” = break
an aggregate into its constituents.

@ Example: having determined that Joe's
Bar sells very few Anheuser-Busch
beers, break down his sales by
particular A.-B. beer.

Roll-Up =

@ Roll-up = aggregate along one or more
dimensions.

@ Example: given a table of how much
Bud each drinker consumes at each bar,
roll it up into a table giving total
amount of Bud consumed for each
drinker.

Materialized Data-Cube Views °

@ Data cubes invite materialized views
that are aggregations in one or more
dimensions.

@ Dimensions may not be completely
aggregated --- an option is to group by
an attribute of the dimension table.

Example °

€ A materialized view for our Sales data
cube might:

Aggregate by drinker completely.

Not aggregate at all by beer.

Aggregate by time according to the week.

Aggregate according to the city of the
bar.

EERCONIDN =

Data Mining -

@ Data mining is a popular term for
queries that summarize big data sets
in useful ways.

¢ Examples:

1. Clustering all Web pages by topic.

2. Finding characteristics of fraudulent
credit-card use.

Market-Basket Data °

@ An important form of mining from
relational data involves market baskets
= sets of “items” that are purchased
together as a customer leaves a store.

¢ Summary of basket data is frequent
ftemsets = sets of items that often
appear together in baskets.

Example: Market Baskets °

@ If people often buy hamburger and
ketchup together, the store can:
1. Put hamburger and ketchup near each
other and put potato chips between.

2. Run a sale on hamburger and raise the
price of ketchup.

Finding Frequent Pairs °

@ The simplest case is when we only
want to find “frequent pairs” of items.

¥ Assume data is in a relation
Baskets(basket, item).

@ The support threshold s is the
minimum number of baskets in which a
pair appears before we are interested.

Frequent Pairs in SQL *

Look for two
SELECT bil.item, b2.item il
with the same
FROM Baskets b1, Baskets b2 basket and

different items.
First item must

2 \WHERE b1.basket = b2.basket

AND bl.item < b2.item (ISR,
so we don't
® [GROUP BY bL.item, b2.item | countthe same
air twice.
® HAVING COUNT() >=s, | >~ °©
t

Create a group for
each pair of items
that appears in at

least one basket.
35

Throw away pairs of items
that do not appear at least
s times.

A-Priori Trick ---1 =°

@ Straightforward implementation
involves a join of a huge Baskets
relation with itself.

@ The a-priori algorithm speeds the
query by recognizing that a pair of
items {/j} cannot have support s
unless both {/} and {; } do.

A-Priori Trick --=- 2

@ Use a materialized view to hold only
information about frequent items.
INSERT INTO Baskets1(basket, item)

SELECT * FROM Baskets
Items that

WHERE item IN (appear in at
SELECT ITEM FROM Baskets e
GROUP BY item 2
HAVING COUNT(*) >= s

N =

AN 4

A-Priori Algorithm ©

Materialize the view Baskets1.

Run the obvious query, but on
Baskets1 instead of Baskets.
Baskets1 is cheap, since it doesn't
involve a join.

Basketsl probably has many fewer
tuples than Baskets.

*

Running time shrinks with the square of
the number of tuples involved in the join.

38

Example: A-Priori °

€ Suppose:
1. A supermarket sells 10,000 items.
2. The average basket has 10 items.

3. The support threshold is 1% of the baskets.

@ At most 1/10 of the items can be
frequent.

@ Probably, the minority of items in one

basket are frequent -> factor 4 speedup.

39

